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Problem Definition: Retailers have become increasingly interested in personalizing their products and

services such as promotions. For this, we need new personalized demand models. Unfortunately, social data

is not available to many retailers for cost and/or privacy issues. Thus, we focus on the problem of detecting

customer relationships from transactional data, and using them to target promotions to the right customers.

Academic / Practical Relevance: From an academic point of view, this paper solves the novel problem

of jointly detecting customer trends and using them for optimal promotion targeting. Notably, we estimate

the causal customer-to-customer trend effect solely from transactional data, and target promotions for mul-

tiple items and time periods. In practice, we provide a new tool for Oracle Retail clients that personalizes

promotions.

Methodology: We develop a novel probabilistic demand model distinguishing between a base purchase

probability, capturing factors such as price and seasonality, and a customer trend probability, capturing

customer-to-customer trend effects. The estimation procedure is based on regularized bounded variables least

squares and instrumental variable methods. The resulting customer trend estimates feed into the dynamic

promotion targeting optimization problem, formulated as a non-linear mixed-integer optimization model.

Though it is NP-hard, we propose an adaptive greedy algorithm.

Results: We prove our customer-to-customer trend estimates are statistically consistent, and the adaptive

greedy algorithm is provably good. Having access to Oracle Retail fashion client data, we show that our

demand model reduces the WMAPE by 11% on average. Also, we provide evidence of the causality of our

estimates. Finally, we demonstrate that the optimal policy increases profits by 3-11%.

Managerial Implications: The demand model with customer trend and the optimization model for tar-

geted promotions form a decision support tool for promotion planning. Next to general planning, it also

helps to find important customers and target them to generate additional sales.

Key words : Retail Operations, Demand Modeling, Instrumental Variables, Promotion Optimization,

Promotion Targeting, Approximation Algorithms
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1. Introduction

Trends play an important role in a variety of industries such as fashion clothing and consumer

electronics. Over time, the products that customers are attracted to can change. At any point in

time, this temporal interest is characterized as the current trend. In general, the trend has often

been set by mass marketing and celebrity culture. Increasingly, customers are not only keeping up

with this general trend, but also with trends in their own social circles. Social interactions have

always been important in creating a trend, for example, due to the word-of-mouth effect. However,

its importance has surged due to the rise of social media such as Facebook, Twitter, and Instagram.

Nowadays, every person is able to create a social trend resulting in a change of the purchase behavior

of their social connections.

Working together with the Oracle Retail group, we notice that their retail clients have become

interested in personalizing their services such as pricing and promotions. At the same time, research

related to personalized pricing has received increasing attention in the academic literature. Most

purchases are able to create externalities whereby the sale to one customer affects other customers.

We need to measure these customer-to-customer trend effects before we can personalize prices and

target promotions effectively. In this work, our goal is to detect these customer-to-customer trends

and use them to improve demand estimation and devise promotion targeting policies.

The process by which customers affect each other is complex. We are specifically interested in

estimating the causal effect that one customer’s purchase has on another customer’s purchase deci-

sion. This is a difficult problem, because a purchase not only depends on trends, but can also be

caused by factors such as an item’s pricing or a time period’s seasonality. Thus, for causal estimates

of the customer trend, we need to disentangle the different factors. In this regard, social media

data would be extremely useful, because it helps determine the important customer relationships.

Unfortunately, privacy and/or cost issues make it hard for retailers to acquire detailed social data on

their customers. To overcome this issue, we propose to detect customer relationships and estimate

customer trends solely through transaction data that is readily available to the retailer.

Having estimated a demand model that accounts for customer trends, optimal dynamic promotion

targeting can still be a complex problem. In previous literature, either complex graph models are

estimated to describe social relationships without optimizing over the graph, or pricing is optimized

to maximize revenue or influence spread over a given graph. In this work, we aim to combine both the

estimation of the customer trend graph and the optimization of targeted promotions over this graph.

For this purpose, we need to ensure that the customer trend can be optimized over. Therefore, we

construct the customer trend demand model that can be represented by an interpretable graph model

describing by how much one customer’s purchase increases the probability of another customer’s

purchase.
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Figure 1 Workflow of the promotion recommendation tool

The above approach is depicted in Figure 1. In this paper, we develop the Trend-Estimation

algorithm that estimates the customer trend demand model based on solely transaction data and

inventory data, as well as the Adaptive-Greedy algorithm that optimizes the targeting of promotions

given an estimated customer trend demand model and business parameters such as the available

prices and budget.

1.1. Contributions

The main contributions of this paper are threefold. First, we develop a customer trend demand model

that accounts for the fact that customers affect each other’s purchase probability. Second, we devise

a model that solves the Dynamic Promotion Targeting Optimization Problem that also incorporates

the customer trend effects. Finally, on real world instances from an Oracle Retail fashion client, we

show that our models are effective in improving forecasting accuracy and increasing sales profit. The

following gives a more detailed list of our contributions:

1. Novel demand model accounting for customer trends. We formulate an interpretable demand

model estimating how the probability that a customer purchases an item at a time is driven by

several factors as well as by other customers. The base of our model is formed by a classical

demand model that captures traditional demand features such as price, brand, and seasonality.

Added to this is the customer trend model that describes the change in purchase probability

when other customers purchased an item earlier. We visualize the customer trend model as an

unknown directed network where customers (or groups of similar customers) form the vertices,

and edges describe the conditional probability of a customer to purchase given that another

customer has purchased before them. Section 2.1 formulates the demand model and describes

the required data for estimation.

(a) Causal estimation procedure using only transaction data. Due to the difficulty in acquiring

social media data, we use purchase transaction data to detect customer trend effects. This

means that we have to both detect customer relationships and estimate their strength. In

contrast, when social data is available, we only need to estimate the strength of customer

relationships. Nonetheless, we develop the Trend-Estimation algorithm that works for any

general structure on the base purchase model and discovers causal customer trend effects.

To deal with estimation complexity, we use a two-stage approach where first the base pur-

chase model is estimated, and afterwards the customer trend model is fit. To assert causal
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relationships, we adapt the instrumental variables (IV) method to fit our model, where we

use lagged variables as instruments. Section 2.2 describes this estimation procedure and

details how it addresses the aforementioned issues.

(b) Consistent estimation and finite-sample guarantee on estimation error. Because we utilize

the customer trend when targeting promotions, we want to guarantee that the estimates of

the customer trend model are consistent. We prove this by showing that, under mild con-

ditions, the estimated customer-to-customer-trend probabilities converge to the underlying

‘true’ probabilities. Under stronger assumptions, we extend this result to a probabilistic

finite-sample guarantee on the estimation error between the estimated and ‘true’ customer-

to-customer trend probabilities. Section 2.2.1 presents these results in more detail.

2. Dynamic optimization model for targeting promotions. We formulate the Dynamic Promotion

Targeting Optimization Problem that maximizes the total expected revenue of multiple items

over multiple time periods while satisfying business rules such as promotion limits and inven-

tory shipping. A targeted promotion policy determines which customer should receive a special

promotion for which item and at what time. In this model, we specifically account for the

customer-to-customer trend effect. Not only are we able to target those customers who respond

unusually strongly to promotions, but also those customers who generate notably more addi-

tional purchases through their network influence. Given its formulation, we show that the

Dynamic Promotion Targeting Optimization Problem is NP-hard. Section 3.1 formulates the

promotion targeting model and demonstrates its complexity.

(a) Tractable Adaptive-Greedy algorithm to approximate solution. Though the dynamic promo-

tion targeting optimization model is hard to solve, we develop a tractable Adaptive-Greedy

algorithm that finds an approximate optimal solution. This algorithm can find the optimal

solution exactly in special cases that we characterize. Section 3.2 describes the Adaptive-

Greedy algorithm.

(b) Analytical guarantee through C-submodularity. Invoking the concept of submodularity and

the newly defined concept of C-submodularity, we are able to show analytical guarantees

on more general cases. In the case where items are complementary, we prove that the

revenue function is submodular in the promotion policy. As a result, we show that the

Adaptive-Greedy algorithm receives at least a (1− 1
e
) fraction of the optimal revenue. In

the general case where some items can be complementary and others substitutable, we

introduce the new concept of C-submodularity, which is a measure of how non-submodular

a function is. In this part, we show a parametric guarantee on the revenue, as a function

of the non-submodularity. Section 3.2.1 discusses and proves these analytical guarantees.
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3. Practical contribution. Working together with the Oracle Retail group, we have access to data

from a large fashion retail client. Using their transaction data, we are able to test the forecasting

accuracy of our demand model, and we are able to evaluate the effectiveness of our targeted

promotion policies. Section 4.1 introduces the available transaction data.

(a) Strong forecasting accuracy on real world data. We test the accuracy of our demand model

relative to classical demand models that ignore customer trends. This comparison shows

that including the customer trend model improves the Weighted Mean Absolute Percentage

Error (WMAPE) by 5 percentage points or 11% on average. Also, we test and find that the

instrumental variables are valid. Sections 4.2 and 4.2.1 present the improved forecasting

metrics and the causality analysis.

(b) Improved revenue on realistic instances. We examine how our targeted promotion policies

increase revenue compared to the retailer’s existing practice. We observe that the retailer’s

revenue is increased by 3% up to 11%. The average revenue improvement is on the order of

7%. This increase is exclusively due to an improved targeted promotion policy, and hence

significant, due to the thin margins in the retail industry. Section 4.3 presents the details

of this comparison.

1.2. Literature Review

In the face of demand uncertainty, lack of historical data, and seasonal trends, demand prediction

for the fashion industry is a significant challenge for retailers. This is why it is not surprising to see

a large body of literature on demand prediction in the fashion industry (Nenni et al. 2013, Liu et al.

2013, Beheshti-Kashi et al. 2015, Mohr 2013). According to Beheshti-Kashi et al. (2015), alongside

classic models, more and more research has been oriented towards understanding the impact of social

media on demand and personalized demand estimation.

Nonetheless, the advantages of understanding the impact of social media are not limited to mere

prediction. In Alves et al. (2016), the authors provide a wide review on the impact of well-planned

Social Media Marketing (SMM). The authors mention that social media sentiment has a stronger

impact on firm stock performance than conventional media.

The literature on SMM can be split into two main streams of literature. The first stream of

literature deals with the question of how to correctly plan an effective SMM policy. This stream

usually assumes prior partial knowledge of the social network and accordingly, find the central

influential people that should be targeted for an SMM campaign (Pradiptarini 2011, Rathore et al.

2016, Atazky and Barone 2015). The second stream of literature deals with the question of how

to measure the failure/success of an SMM campaign. Most of the common measures, such as the

number of clicks or shares, provide little to no information regarding the impact of the campaign

in terms of dollar return. Therefore, a large body of research has been focused on understanding
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the return on investment (ROI) of SMM campaigns (Kumar and Mirchandani 2012). This research

contributes to both streams on the literature on SMM.

To battle the question of finding influential customers, platforms (such as Stack Influence, Tap-

Influence, Influence Network, ApexDrop Influence Marketing, etc.), were established in order to link

influential people with fashion retailers. In such platforms, customers can register as influencers and

are required to provide evidence for their impact on their environment (such as connections on social

media, or daily views in their fashion blog). Retailers can then use this platform to locate influencers

in specific areas. Considering only the self-declared influencers, without a measure of impact, can

lead to suboptimal marketing strategies. In order for retailers to be able to plan an optimal strategy,

they need to be able to view the entire social network.

Unfortunately, in many of the cases, the social network is unknown and must be inferred. Signifi-

cant literature has focused on using field experiments to detect the strength of social relationships

(Aral and Walker 2011, Bakshy et al. 2012, Bapna and Umyarov 2015, Eckles et al. 2017). Without

social data available, we need to not only estimate the strengths, but also the underlying network.

Several papers analyze this problem through influence models proposing that diffusion happens

with a certain probability (Goyal et al. 2010, Myers and Leskovec 2010, Gomez Rodriguez et al.

2010, 2011). These papers assume that a node can only be infected once. Whereas in our retail

setting, multiple purchases can occur at different times, especially when we estimate the model at a

level where a node represents a group of customers.

When learning a network for the purpose of promotion targeting optimization, it is important to be

able to distinguish between spurious correlation and causal effect. While the literature above is not

concerned with showing causal effects, Bramoullé et al. (2009) estimate causal effects in networks.

They consider individuals as parts of a group and their outcome is described by a model that is

linear in the average outcome of their group. The endogenous peer effect is estimated through the

instrumental variables (IV) method; an adapted version of the IV method is also used in this work.

For a detailed review on IV methods, we refer to Cameron and Trivedi (2005) and Imbens (2014).

Once the network is known, retailers remain with the question of how to find an optimal market-

ing strategy that utilizes the social connections in the network. One example of a marketing tool

that utilizes the social network structure is viral marketing. While mass marketing indiscriminately

promotes products to all customers. Direct marketing personalizes these strategies by promoting

to those customers that are most likely to purchase. Viral marketing advances one step further

by promoting to those customers that also have a large social influence, for example through the

word-of-mouth effect.

In order to understand the impact of each customer on the social network, in Domingos and

Richardson (2001) the authors determine the network value of customers in addition to their intrinsic
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value. They propose a Markov random field model to describe the purchase decisions of customers,

and with this model, they are able to compute the expected global lift in profit if a certain set of

customers receive a promotion. Kempe et al. (2003, 2015) furthered this by considering the influence

maximization problem: selecting the initial set of nodes to activate such that the final number of

active nodes is maximized. Their main result is that the influence maximization problem can be

efficiently approximated if the nodes become active according to a linear threshold or independent

cascade model. Further literature improved the speed of the initial algorithms, some with guarantees

(Leskovec et al. 2007, Borgs et al. 2014) and some without (Chen et al. 2009, 2010). A major

difference with this literature is that we consider the more general case of offering promotion prices

to maximize revenue instead of determining influencers to maximize adoption.

The problem of influence maximization is highly related to the well-studied vertex-cover and

max-cover problems. In the case of max-cover, given several sets of elements and a number k, we

must select at most k sets such that the maximum number of elements are covered. The objective

in the case of the max-cover problem is to maximize the number of covered elements and hence,

the problem has a submodular structure. In Nemhauser et al. (1978), the authors show that for

maximization problems with monotone submodular objective functions, a greedy algorithm can find

a solution that is at most (1− 1
e
) of the optimal solution. This result was since extended to the

online settings, as well as adaptive (interactive) optimization problems. For a review on Submodular

Function Maximization (Krause and Golovin 2014). Randomized algorithms have also been proposed

to battle the problem of Submodular Function Maximization (Buchbinder et al. 2014). In this work

we aim to maximize the impact of targeted treatment for different products. The cross product effect

can lead to a non-submodular objective, which implies that the existing literature may not be of

help.

While the problem of Submodular Function Maximization has been well studied, the problem

of maximizing over partially submodular functions remains unsolved. In this work, we extend the

results in Nemhauser et al. (1978), and propose a bound on the optimality gap achieved by the

greedy algorithm for the case of non-submodular functions and subject to cardinality constraints.

We illustrate this bound with respect to the promotion targeting problem.

Among other applications for the influence maximization problem are network epidemic elimina-

tion (Drakopoulos et al. 2014, 2016, Aral et al. 2009), spread of computer viruses (Garetto et al.

2003), or diffusion of innovations (Sahin 2006). See Nowzari et al. (2016) for a survey on spreading

processes on complex networks. One of the most commonly used applications for influence maxi-

mization is in promotion pricing. While the problem of influence maximization concerns with the

questions of “who” to pick, the question of pricing over networks adds the dimension of the price.

This problem is a generalization of the influence maximization problem, as it allows us to give

different treatments to different customers.
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Research of pricing over networks was initiated by Hartline et al. (2008). They assume customers

have a valuation for the product, which is drawn from a known distribution. Different influence

structures result in different valuation distributions, particularly, a customer’s valuation distribution

changes as other customers buy the product (higher previous purchases implies a higher probability

of a large valuation). Given this framework, Hartline et al. (2008) proposes the influence-and-exploit

marketing strategy. Herein, selected customers are influenced through a free product, after which

the general population is exploited by offering the product at an optimal myopic price. In contrast,

Akhlaghpour et al. (2010) consider the problem without price discrimination. They show that even

in the case of a single price, the problem is highly intractable. Alternatively, Arthur et al. (2009)

consider the same problem in a “cashback” setting instead of a “free product” setting.

Subsequently, other papers have extended the problem of pricing over networks. Candogan et al.

(2012), Bloch and Quérou (2013), Cohen and Harsha (2013), Lu and Lakshmanan (2012) consider

a monopolist offering individualized prices to each customer in more general known networks, and

determine the optimal individualized prices dependent on network externalities. Accounting for

network externalities is shown to be able to lead to a significant increase in profit. For a review on

pricing and promotion planning see Cohen-Hillel et al. (2019).

2. Customer Trend Demand Model

In what follows, we introduce and formulate our demand model that incorporates the customer

trend model. For this purpose, the available transaction data needs to describe the purchases that

n unique customers made of m distinct items, each item being available in the different stores for Ti

time periods. More details about the available Oracle Retail client data are given in Section 4.

2.1. Model Formulation

As described, we consider a probabilistic model of demand that uses a variety of factors to describe

the probability that a customer c purchases item i at time t. We are interested in a model that

describes the probability of the binary random variable Bcit that equals 1 if customer c purchases

item i at time t and equals 0 otherwise. The factors that explain the purchase probability can be

split into two types: trend-independent effects (such as price, style, seasonality, and promotion)

and trend-dependent effects (namely, customers following the customer-to-customer trend). In what

follows, we will introduce a set of random variables that indicate what caused customer c to purchase

item i at time t. In particular, in the case where the purchase decision is based on trend-independent

factors, we let F c′it′
cit = 0 denote that the purchase decision of customer c for item i at time t is not

based on following the other customer c′ for item i at previous time t′. On the other hand, in the

case that the purchase decision is based on trend-dependent factors, we let F c′it′
cit = 1 denote that the

purchase decision of customer c for item i at time t is based on following what another customer c′
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did with the same item i at a previous time t′. In this latter event, we assume that customers will only

follow the decision of others between time t−M and t− 1. Beyond the memory of M time periods

ago, the customer-to-customer trend tapers off. For example, because the earlier customer might not

be exerting effort to portray the product as fashionable anymore. Later in Section 4.2, we describe

how the memory M can be tuned from the data. These events are collectively exhaustive, but we

assume they are also mutually exclusive, meaning that
∑n

c′=1

∑t−1

t′=t−M F c′it′
cit ≤ 1. This assumption of

following exactly one other customer is natural in the network pricing literature (Candogan et al.

2012, Kempe et al. 2003). Given these options, we can use countable additivity to define the purchase

probability as follows,

P (Bcit = 1) = P
(
Bcit = 1,F c′it′

cit = 0 ∀c′, t′
)

+
n∑

c′=1

t−1∑
t′=t−M

P
(
Bcit = 1,F c′it′

cit = 1
)
. (1)

The first term of equation (1) is the base purchase model that describes the case where the purchase

decision is based on trend-independent effects. This term can be viewed as a traditional demand

model, for the reason that traditional demand forecasting features, such as an item’s price and style

or a time period’s seasonality and promotion status, can be subsumed under the category of trend-

independent factors. It is important to note is that we capture cross-item effects in this part of our

demand model. We consider the set of prices that are presented to customer c for all other items at

time t as features in the base model. If we denote the customer-item-time specific features by the

vector xcit, we use q(xcit) to represent these traditional demand models. Examples of q(·) are linear

regression, logistic regression, regression trees, or random forests among others. The application in

Section 4 uses a logistic regression model for q(·).
The second term of equation (1) incorporates the customer trend model that captures the case

where the purchase decision is based on trend-dependent effects. This term proposes that if the

purchase decision is based on the customer trend, then this is because customer c decided to follow

the decision of one specific customer c′ at one specific time period t′. Now, if the purchase decision

is based on following the behavior of customer c′ for item i at time t′ (F c′it′
cit = 1), it still needs to be

true that an actual purchase was made. Thus, the probability that customer c purchases item i at

time t based on following customer c′ at time t′ can be conditioned on the fact whether customer c′

actually purchased item i at a previous time t′,

P
(
Bcit = 1,F c′it′

cit = 1
)

= P
(
Bcit = 1,F c′it′

cit = 1|Bc′it′ = 1
)
P (Bc′it′ = 1)

+P
(
Bcit = 1,F c′it′

cit = 1|Bc′it′ = 0
)
P (Bc′it′ = 0) ,

where we note that P (Bc′it′ = 0) = 1−P (Bc′it′ = 1), to obtain the following,

P(Bcit = 1,F c′it′
cit = 1) = P (Bcit = 1,F c′it′

cit = 1|Bc′it′ = 0)

+
(
P (Bcit = 1,F c′it′

cit = 1|Bc′it′ = 1)−P (Bcit = 1,F c′it′

cit = 1|Bc′it′ = 0)
)
P (Bc′it′ = 1). (2)



Baardman, Borjian, Cohen-Hillel, Panchamgam, Perakis: Detecting Customer Trends for Optimal Promotion Targeting
10

At time t, we know what happened at earlier times, and hence the actual probability P(Bc′it′ = 1)

will be known to be either 0 or 1. In equation (2), the customer-to-customer trend is characterized

by the conditional purchase probability. When customer c′ purchases item i at time t′ it has the

opportunity to create a trend for item i among the other customers in future periods. In our model,

we assume that this customer-to-customer trend probability is independent of the specific item and

time under consideration. Without this assumption, there would not be enough data to estimate

any customer-to-customer trend probabilities from. The assumption that the customer trend is

independent of the specific item is justified by the idea that the customer trend behaves similarly for

items in the same category (e.g., women’s dresses, women’s tops, men’s tops). Hence, when we fit the

model, we ensure that all items in the dataset come from the same category. For the independence

between the customer trend and the specific time period, we argue that the memory M captures

that the customer trend only exists between close time periods.

Under this assumption, we can define the customer-to-customer trend probability in a less com-

plicated manner as pc′c = P (Bcit = 1,F c′it′
cit = 1|Bc′it′ = 1)− P (Bcit = 1,F c′it′

cit = 1|Bc′it′ = 0). We can

interpret the customer-to-customer trend probability as the increase or decrease in the purchase

probability of customer c for item i at time t when following the decision of customer c′ to buy or not

buy item i at time t′ < t. In this paper, we assume that customers are not likely to buy an item for the

sole reason that another customer did not buy it, meaning that P (Bcit = 1,F c′it′
cit = 1|Bc′it′ = 0) = 0.

However, under the definition above, we can also capture the case where customers could have both

positive and negative effects on each other.

Additionally, this representation of the customer-to-customer trend probability allows us to think

of the customer trend as evolving over a network. Namely, the customer trend is defined by a weighted

graph where each vertex is a customer c, each directed edge indicates whether customer c′ affects

customer c, and the weight on each edge is pc′c. Figure 2 gives examples of such a network and the

corresponding customer-to-customer trend probabilities.

(a) General graph (b) Forest graph

Figure 2 Examples of the customer trend portrayed as a graph with customers as the vertices, edges as the

customer trends, and weights as the customer-to-customer trend probabilities
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In addition, we simplify the notation of the purchase probability as bcit = P(Bcit = 1) and

the notation of the base purchase probability as qcit = q(xcit) = P
(
Bcit = 1,F c′it′

cit = 0 ∀c′, t′
)

+∑n

c′=1

∑t−1

t′=t−M P (Bcit = 1,F c′it′
cit = 1|Bc′it′ = 0). Combining these ideas together, we propose the fol-

lowing customer trend demand model:

bcit = qcit +
n∑

c′=1

t−1∑
t′=t−M

pc′cbc′it′ or bcit = qcit +
n∑

c′=1

pc′c

t−1∑
t′=t−M

bc′it′ . (3)

In what follows, our goal is to estimate this model, assess its validity, and test its performance.

This entails estimating the base model, producing q̂(·), as well as the customer trend probabilities,

generating p̂c′c. Equipped with these estimates, the customer trend demand model can be used for

predicting purchases.

The model in equation (3) describes the structural equation underlying the purchase probability

bcit. However, the data that we observe is not generated exactly from this model for two reasons.

Firstly, model misspecification such as certain variables affecting the purchase probability being

omitted from the model, means that the observations of bcit are different from the value given by

equation (3). Secondly, the available transaction data can not directly tell us what the purchase

probability is, we can only observe whether a transaction resulted in a purchase.

Let ycit represent the outcome observed in the data. In other words, ycit = 1 if the transaction data

shows that customer c purchased item i at time t and equals 0 otherwise. For the most granular level

of data (individual customer, single item, particular time), the value of ycit is our best approximation

to the purchase probability bcit. However, when individual customers are aggregated into customer

groups we are able to approximate the purchase probability more granularly using the empirical

probability. For example, if C is a set of customers, then we can use the following empirical probability

instead (where | · | denotes the cardinality of a set),

yCit =
1

|C|
∑
c∈C

ycit. (4)

Here, the approximation of the purchase probability can be interpreted as the average probability

that a customer in group C buys item i at time t. In the rest of this paper, we use the notation ycit

regardless of whether the indices indicate individuals or groups.

Given the available data, we estimate q̂(·) and p̂c′c from the customer trend demand model:

ycit = qcit +
n∑

c′=1

pc′c

t−1∑
t′=t−M

yc′it′ + εcit, (5)

where εcit is the error that captures the uncertainty to possible model misspecification and using ycit

as an approximation of bcit.
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2.2. Trend-Estimation Algorithm

Having described the model, we are interested in estimating the base purchase model q and the

customer-to-customer trend probabilities pc′c. Analyzing the customer trend demand model (5), we

observe that it closely resembles a linear regression model for a given c. The model error εcit is additive

to the structural linear part of the model. The base model qcit can be seen as the constant of the

linear regression model, the customer trend probabilities pc′c form the linear regression parameters,

and the summations of past purchase probabilities
∑t−1

t′=t−M yc′it′ form the independent variables of

the linear regression model. Our estimation procedure will use the fact that the model is close to a

linear regression model. However, there are three complications that need to be accounted for when

estimating this model: 1) estimation complexity: the model is hard to estimate, 2) parsimonious

model: the customer-to-customer trend network is preferred to be sparse, 3) causal relationships:

the estimates of the customer-to-customer trend need to indicate causal relationships.

First, the model is complex to estimate because the ‘constant’ of the linear regression model is

actually formed by a possibly non-constant function q(·) of the customer-item-time specific features

xcit. For a general q this means it is hard to estimate the model directly. Nonetheless, we devise

an estimation procedure that uses ideas from the Box-Jenkins method. The Box-Jenkins method

is a multi-stage modeling approach that is often used to fit time series models. The first stage

determines whether the time series is stationary, and if this is not the case, then the time series data

is standardized by identifying and removing the factors that make the time series non-stationary.

The second stage then fits a time series model to the standardized time series data.

Our estimation algorithm takes a similar multi-stage approach. First, we fit the purchase proba-

bility solely on the base purchase model to find q̂(·). Then, we standardize the purchase probability

by subtracting the predicted base purchase model to obtain the standardized demand model with

customer trend:

ycit− q̂cit =
n∑

c′=1

pc′c

t−1∑
t′=t−M

yc′it′ + εcit. (6)

Finally, we fit the linear regression in equation (6) to find p̂c′c. This procedure significantly diminishes

the estimation complexity, as it reduces to estimating a standard model to identify q̂(·) and a linear

regression to identify p̂c′c.

Secondly, there are two aspects that warrant the use of regularization in our estimation procedure.

One aspect is that a large number of parameters need to be estimated, namely n2 customer-to-

customer trend probabilities, but realistically the model is sparse, as in that many of these parameters

are equal to 0. Each parameter indicates the probability that one customer affects another, and

realistically not every customer affects all other customers. Regularization can aid in estimating a

parsimonious model by creating a sparse set of the most explanatory relationships. Another aspect
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is that the purchase probabilities are measured with error. As explained before, the data ycit is

not exactly equal to the true purchase probability bcit. This measurement error can also be dealt

with by including regularization in the estimation algorithm (see for example Bertsimas and Copen-

haver (2018)). When estimating the customer-to-customer trend probabilities, the objective of the

estimation model includes a LASSO regularization penalty.

Lastly, because the goal is to optimize the targeting of promotions, we need to ensure that the

estimated effect of a promotion on the likelihood of a purchase is causal. Without addressing this

concern, an estimation method might capture spurious correlations, which would prevent us from

finding the causal effects of the customer-to-customer trend. In the linear model described by equa-

tion (6), we can find a spurious non-causal effect if the variable of interest (here, recent purchase

decisions by other customers) is correlated with other factors affecting the variable that we predict

(here, current purchase decisions) that we do not account for in our model.

To address this possibility, we can take two measures: 1) include important control variables for

the variables that we can account for, 2) use the instrumental variables method for variables that we

cannot account for. We include all important control variables in our base purchase model. In our

application, we include confounding factors such as trend and seasonality (to account for general

fashion trends), pricing (to account for large promotion campaigns or loyalty discount programs),

and inventory (to account for certain stores just receiving inventory earlier than others). Afterwards,

we estimate the customer trend model using the instrumental variables method (for more details

on instrumental variables we refer to Cameron and Trivedi (2005)). If we select valid instruments,

this ensures that we account for all other factors beyond the control variables. Altogether, having

accounted for a host of possible confounding factors and under the validity of our instruments, we

argue that the model finds causal effects and not spurious relationships.

Putting our model in the context of instrumental variables, we can view the standardized demand

model with customer trend (6) for a fixed customer c as a linear regression model: y =Xβ+ ε. We

can view the vector of independent variables y as containing the standardized purchase probabilities

ycit − q̂cit (observations are indexed by pairs of c, i and t). The matrix of dependent variables X

consists of the past purchase probabilities of each customer
∑t−1

t′=t−M yc′it′ (observations are indexed

by pairs of c, i and t, and variables are indexed by c′ and c). The vector of linear regression parameters

β contains the customer-to-customer trend probabilities pc′c (variables are indexed by c′ and c). As

shown above, we need at least one instrumental variable for each endogenous variable contained in

X, i.e., for each column of X. This means an instrument is needed for
∑t−1

t′=t−M yc′it′ for each c′, or

in other words, each customer’s added purchase probability in the past M periods.

Our proposed instrument is yc′′,i,t−M−1 for each c′′, which is the purchase probability M+1 periods

ago for each different customer. To argue that this is a good instrument, we have to assess how it
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satisfies the two IV conditions: 1) the instrument is uncorrelated with the error term, and 2) the

instrument is strongly correlated with the endogenous variables. Firstly, the instruments yc′′,i,t−M−1

have to be uncorrelated with the error terms εcit. By definition of the customer trend model, there

is no effect of yc′′it′ on ycit if t′ < t−M , and hence yc′′,i,t−M−1 and εcit are uncorrelated. Though,

practically, this means that M still has to be selected large enough, because only then we can

guarantee that there is no direct effect of the purchases in period t−M − 1 on current purchase

decisions. Secondly, the instruments yc′′,i,t−M−1 have to be strongly correlated with the endogenous

variables
∑t−1

t′=t−M yc′it′ . Under the same customer trend model definition, the purchase decisions in

the periods t−M to t− 1 were actually affected by the purchases made t−M − 1 periods ago. Yet,

when implementing the model, we need to choose an M that is not too large, because otherwise the

purchases in period t−M − 1 might not be strongly correlated with all the purchase decisions in

periods t−M through t− 1, especially the later periods.

Collectively, this shows that the memory parameter M needs to be selected carefully: large enough

to ensure purchases beyond M periods ago do not affect the current purchase decision directly,

but small enough to ensure that purchases beyond M periods ago still affect the recent purchase

decisions. Later in Section 4.2.1, we test the strength of this instrument on the available Oracle

Retail client data. Also in Section 2.2.1, we establish that our estimated customer-to-customer trend

probabilities are consistent when using IV estimation.

Having explained the different estimation challenges and their remedies, we now describe the

actual estimation procedure that is used to estimate the customer trend demand model (5). The

Trend-Estimation algorithm runs as follows for a given structure on the base model q(·), memory

parameter M , and regularization parameter λ:

Algorithm 1. (Trend-Estimation)

1. Fit the base model q(xcit) to the purchase data ycit by using an appropriate statistical or

machine learning method for q(·). Let the estimated base model be denoted by q̂cit.

2. Fit the customer trend model to ycit− q̂cit, the residuals of the base purchase model, by using

the IV estimation method:

a. Fit the first stage model by solving the OLS regression problem:

min
0≤wc′′c′≤M

n∑
c′=1

m∑
i=1

Ti∑
t=M+1

(
t−1∑

t′=t−M

yc′it′ −
n∑

c′′=1

wc′′c′yc′′,i,t−M−1

)2

. (7)

Let the estimated customer-to-customer trend probabilities be denoted by ŵc′′c′ , and let

the prediction of
∑t−1

t′=t−M yc′it′ be denoted by the following: yc′it =
∑n

c′′=1 ŵc′′c′yc′′,i,t−M−1.

b. Fit the final stage model by solving the LASSO-regularized bounded variables least squares

regression problem:

min
0≤pc′c≤1

n∑
c=1

m∑
i=1

Ti∑
t=M+2

(
ycit− q̂cit−

n∑
c′=1

pc′cyc′it

)2

+λ
n∑

c′=1

n∑
c=1

pc′c. (8)
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Let the estimated customer trend probabilities be denoted by p̂c′c.

The different steps of the Trend-Estimation algorithm follow the previous discussion. The complex-

ity of estimating is addressed by distinguishing between step 1 where the base purchase model is

estimated (purchase probability is standardized) and step 2 where the customer trend model is

estimated. In step 2, the customer-to-customer trend probabilities are estimated by using the two-

stage method used for IV models. Whereas step 2a simply mimics the first stage of IV estimation,

step 2b differs from regular IV estimation. In particular, we introduce LASSO-regularization to the

objective, and we constrain the parameter estimates to guarantee that the estimated probabilities

lie between 0 and 1.

Before we estimate the model, we also need to determine the structure of the base model q, the

memory parameter M , and the regularization parameter λ. To determine these parameters we use

cross-validation, by splitting the dataset into three parts: the training, validation, and testing sets.

We fit our model for numerous options of q, M , and λ on the training set, and compute the measure

of fit on the validation set. Afterwards, we select the model with the q, M , and λ associated with

the best fit on the validation set, and assess its fit on the testing set.

In Section 4, we assess the practical performance of a demand model accounting for customer

trends by applying the Trend-Estimation algorithm to a real dataset. In the following Section 2.2.1,

we analyze the theoretical estimation performance of the Trend-Estimation algorithm described in

Algorithm 1.

2.2.1. Statistical Consistency. We establish, under mild assumptions, that the customer-to-

customer trend probabilities are estimated consistently, i.e., the estimates p̂c′c converge to the true

values pc′c as the number of observations increases. For this result, we need to assume that the

defined instrument yc′′,i,t−M−1 is a valid instrument. Additionally, we need to assume that the base

purchase model is estimated consistently, i.e., the estimate q̂cit converge to the true values qcit as the

number of observations increases. In our application, maximum likelihood estimation of a logistic

regression results in consistent estimates (Amemiya 1985).

Under our assumptions, Theorem 1 below shows that the Trend-Estimation algorithm yields con-

sistent estimates of the customer-to-customer trend probabilities. This result demonstrates that,

for growing datasets, our instrumental variables based estimation procedure is able to capture the

causal effect that one customer’s past purchases have on another customer’s purchase decision.

Theorem 1. Assume that yc′′,i,t−M−1 is a valid instrument and that the base purchase probability

is estimated consistently. Let λ = 0 and consider the ‘true’ model (5), then the Trend-Estimation

algorithm estimates the customer-to-customer trend probabilities consistently as

p̂c′c→ pc′c as
m∑
i=1

Ti→∞.



Baardman, Borjian, Cohen-Hillel, Panchamgam, Perakis: Detecting Customer Trends for Optimal Promotion Targeting
16

This theorem is proven in Appendix A.2.

In Figure 3 we present computational examples of the consistency of the estimates. These examples

consider 8 customers and vary the number of observations per customer. We simulate a trans-

action dataset for each number of observations. With this dataset we estimate the customer-to-

customer trend probabilities that are depicted in the figures. Figure 3a shows that the estimation

error, measured using the Euclidean distance between the estimates and ‘true’ customer-to-customer

trend probabilities ||P̂ −P ||2 =
√∑n

c′=1

∑n

c=1(p̂c′c− pc′c)2, decreases as the number of observations

increases. Notably, the estimation error shrinks rapidly for a small number of observations. This

indicates that even a small dataset can generate good estimates. Figure 3b presents two examples

of customer trend estimates for differing dataset sizes. The red (lower) curve shows the estimated

customer-to-customer trend probability from customer 1 to customer 2, while the blue (upper) curve

shows the estimate from customer 2 to customer 1. The black dotted curves show the ‘true’ value

of p12 and p21. Confirming the result of Theorem 1, the estimates converge towards their respective

‘true’ values.

(a) Estimation error of customer trend estimates (b) Examples of customer trend estimates

Figure 3 Figures showing the convergence of the customer-to-customer trend probability estimates to their respec-

tive ‘true’ values as the number of observations increases

3. Dynamic Promotion Targeting Optimization Problem

In this section, we illustrate how retailers can exploit the customer trend network to maximize

their profit. In particular, we study the Dynamic Promotion Targeting Optimization Problem. A

dynamic promotion targeting policy is a marketing tool, in which a select group of customers may

receive a temporary price reduction for some items. To motivate the Dynamic Promotion Targeting

Optimization Problem, we consider the following setting. Let us assume that at a given time t, a

customer c receives a temporary price reduction for item i. The retailer expects to see that this

temporary price reduction will increase the chances that customer c will buy item i at time t. Due
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to the trend effect, the retailer also expects to see a contagion effect, where in the periods following

time t all of the customers who are linked to customer c, will exhibit a higher tendency to buy

item i. The result is an increase in profit from sales. Thus, we wish to answer the question of which

customers should receive a temporary price reduction, for which item, and when?

3.1. Problem Description

We consider a retailer who sells m products over T time periods to a group of n known customers,

that are embedded in a customer trend network. Here we assume that the network is known in

advance, or was estimated using the procedure described in Section 2. In this problem, the retailer

may target a specific customer, or group of customers, for a temporary promotion, in order to

maximize the retailer’s revenue.

When we consider customers who are embedded in a trend network, the impact of a temporary

promotion may have a ripple effect. In other words, when the retailer deliberates whether to give a

targeted promotion to a customer, it is important to assess not only the impact of this promotion

on the specific customer, but also the impact that this customer’s purchase decision may have on

other customers in the future.

Throughout the rest of this section we use the following notation. We use φ to denote a temporary

promotion. A promotion φ= (cφ, iφ, tφ) indicates that customer cφ was offered a promotion on item

iφ at time tφ. A promotion policy Φ is a set of promotions. The discounted price that is offered to a

customer c for item i at time t, according to policy Φ, is set to be the discounted price of the item,

denoted by di, if there exists a promotion φ ∈ Φ such that cφ = c, iφ = i and tφ = t. Otherwise, the

price that is offered to a customer c for item i at time t, according to policy Φ, is set to be the full

price of the item, denoted by d0
i .

With a slight abuse of notation, we refer to bΦ
cit and qΦ

cit as the purchase and base purchase

probabilities respectively, given a promotion policy Φ. In a similar way, rΦ
cit denotes the price that

was offered to customer c for item i at time t, according to the promotion policy Φ.

The retailer’s objective is to determine a promotion policy Φ that maximizes the total revenue

R(Φ) =
m∑
i=1

n∑
c=1

T∑
t=1

rΦ
citNcb

Φ
cit (9)

In the case where each customer c represents a set of consumers, Nc denotes the cardinality of the

set c. Otherwise, if each customer c represents a single customer, we set Nc to be 1.

When planning a promotion targeting policy, retailers must also consider existing inventory levels.

In the case where a given item is in demand but out of inventory, retailers may have to backorder

the item. For example, retailers may offer the customer a free shipping of the item to the customer’s

house. In this case, the retailer will incur the shipping cost. We refer to these costs as backorder

penalties.
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In order to capture the backorder penalty cost, we assume that for each item i, each store location

l has an initial inventory of Iil units. Each customer c is associated with a preferable store `(c). If

a customer arrives to store l, and faces a stock-out, the store can order the item, and ship it to the

customer at a cost of sil. This means that the cost of backorder given a promotion policy Φ is given

by

m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+

· sil

where NL is the number of store locations.

Finally, incorporating this cost into the revenue of equation (9), the retailer’s objective becomes,

R(Φ) =
m∑
i=1

n∑
c=1

T∑
t=1

rΦ
citNcb

Φ
cit−

m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+

· sil

In practice, a promotion plan is subject to limitations that are dictated by the retailer. One such

example is a restriction on the number of promotions, in which for a given time horizon, the retailer

limits the number of promotions. In other words, the retailer commits to a maximum of L promotions

during the planning horizon (see constraint (10d) in the formulation below).

As a result, the optimal policy for the Dynamic Promotion Targeting Optimization Problem can

be found by solving the following Non-Linear Mixed-Integer Programming formulation

max
~r,~b,~γ

m∑
i=1

n∑
c=1

T∑
t=1

(rcitNcbcit)−
m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncbcit− Iil

+

· sil (10a)

s.t. rcit = d0
i (1− γcit) + diγcit, ∀c, i, t (10b)

bcit = q
Φ(~r)
cit +

n∑
c′=1

t−1∑
t′=t−M

bc′it′pc′,c, ∀c, i, t (10c)

m∑
i=1

n∑
c=1

T∑
t=1

γc,i,t ≤L (10d)

γcit ∈ {0,1} ∀c, i, t (10e)

where Φ(~r) is the promotion policy dictated by the price vector ~r.

Unfortunately, the formulation in (10) describes an NP-hard problem. A proof of the complexity of

the problem can be found in Appendix C.2. Nevertheless, the following section suggests an Adaptive-

Greedy algorithm that can find a near-optimal solution to the problem formulation (10). We show

an analytical bound on the optimality gap achieved by this algorithm, and show two special cases

in which this bound can be further improved.
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3.2. Adaptive-Greedy Algorithm

Having described the Dynamic Promotion Targeting Optimization Problem, we now propose a fast

Adaptive-Greedy algorithm that can find a near-optimal promotion targeting policy. We also provide

a novel approach for the analysis of greedy algorithms, that allows us to bound the worst case

optimality gap. In general, greedy algorithms provide fast and intuitive solutions. As described

in Nemhauser et al. (1978), for maximization problems of a non-negative monotone submodular

function subject to cardinality constraints, a greedy algorithm can find a near-optimal solution.

Namely, a solution that is within a (1 − 1
e
) factor of the optimal solution. Nevertheless, in the

general case, the optimality gap of the greedy algorithm is unbounded. In this section, we provide an

extension to the results in Nemhauser et al. (1978). We identify a wide family of functions, referred

to as C-Submodular functions, for which the greedy algorithm can find a near-optimal solution when

subject to a cardinality constraint.

This section is outlined as follows. First, we describe the suggested Adaptive-Greedy algorithm

for the Dynamic Promotion Targeting Optimization Problem. Then, we introduce the concept of

C-Submodular functions, and use it to provide an analytical bound on the optimality gap of the

algorithm. In Section 3.2.1, we show that under mild conditions, the revenue function in (10),

becomes submodular, and the bound on the optimality gap can be reduced to (1− 1
e
).

We begin by introducing the suggested Adaptive-Greedy algorithm for the Dynamic Promotion

Targeting Optimization Problem.

Algorithm 2. (Adaptive-Greedy)

1. Initialize an empty promotion plan Φ = ∅;
2. Repeat L iterations,

(a) For every promotion φ= (cφ, iφ, tφ), calculate the potential increase in revenue from adding

φ to the promotion plan Φ

ρ(φ,Φ) =R(Φ∪φ)−R(Φ)

(b) Choose the promotion φ with maximum potential increase in revenue, and add it to the

promotion plan Φ.

In Section 4, we compute and test the Adaptive-Greedy algorithm on real data. In the remainder

of this section, we provide an analysis for the worse-case performance of the algorithm. In order

to show an analytical bound on the optimality gap of the Adaptive-Greedy algorithm described in

Algorithm 2, we introduce the following definition.

Definition 1 (C-Submodular function). A function f is called C-Submodular, if for every X,Y

with X ⊂ Y and every element x /∈X,

f(Y ∪{x})− f(Y )≤C + f(X ∪{x})− f(X).



Baardman, Borjian, Cohen-Hillel, Panchamgam, Perakis: Detecting Customer Trends for Optimal Promotion Targeting
20

This definition shares some similarity with the definition of K-convex functions. In inventory

control theory, K-convex functions are non-linear functions with bounded level of non-convexity.

K-convex functions are a weaker version of a convex function. Similarly, C-Submodular functions

provide a weaker version to the concept of a submodular function. A C-Submodular function f , is not

submodular, however the level of non-submodularity is bounded by the parameter C. Specifically,

C = 0 in the case where the function f is submodular.

Next. Theorem 2, presents a parametric analytical bound on the optimality gap of the adaptive

greedy algorithm, that is, a function of the parameter C, and the cardinality parameter L.

Theorem 2. Let f be a monotone C-Submodular non-negative function. The adaptive greedy

algorithm, which starts with S as the empty set and for L (where L is the limit on the cardinality

of the set) iterations picks an element x which maximizes the marginal benefit f(S ∪ {x})− f(S),

provides a set S of size L that achieves an objective of at least (1− 1
e
)f(S∗)−LC(1− 1

e·(L−1)
) , where

S∗ is the optimal set.

The proof of Theorem 2 can be found in Appendix B.1.

In the case of the Dynamic Promotion Targeting Optimization Problem that was described in

problem (10), the limit on the cardinality of the set, L, is the limit on promotions over the time

horizon. The non-submodularity parameter C is characterized in Theorem 3 below.

δ is bound on the level of substitution between the different items. This value captures the loss in

demand for a specific item i, given that another item ĩ was given a promotion. Formally, δ can be

calculated as follows.

δ= max
c,i,t,Φ,φ̃:t

φ̃
=t

{
bΦ
cit− b

Φ∪{φ̃}
cit ,0

}
,

π∗(P ) is a parameter of the trend network. For tree structured networks, this parameter is equal

to the highest trend in the network. Otherwise, in the case of a cyclic network, this value grows in

the number and length of the cycles in the network. This value is defined as follows.

π∗(P ) = max
c,c′,t

 ∑
π∈Pt(cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 .

Cq captures the level of non-submodularity of the base demand function q. in general, Cq is defined

to be the lowest non-negative value such that for each Ψ,ψ and ψ̃,

(q
Φ∪{φ,φ̃}
cφitφ

− qΦ∪{φ}
cφitφ

− qΦ∪{φ̃}
cφitφ

+ qΦ
cφitφ

)≤Cq

Ncmax is the cardinality of the largest group of customers that are aggregated into a single group.

In the case of promotion targeting to individual customers, Ncmax = 1. The main significance of this
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parameter is in the case where there is a large variability in the sizes of the customer groups. If

the customers are all of a similar size, this value will have a similar linear impact on the optimal

revenue. Nonetheless, in the case in which the customer groups are of different sizes, the optimal

revenue will not grow linearly in the size of the biggest customer group. This implies that in the case

where there is a big variability in the sizes of the customer groups, the bound on the optimality gap

will decrease.

Theorem 3. If the base purchase probability q is a Cq-submodular function, then the revenue

function in (10) is C-Submodular, with

C =L

2d0
i δNcmax +md0

iCqNcmax +m(T − 1)π∗(P )Cqd
0
i

n∑
c=1

Nc + δT
NL∑
l=1

sil
∑

c:`(c)=l

Nc

 ,

The proof of Theorem 3 can be found in Appendix C.3, and is based on the analysis in Appendix

B.2.

In order to illustrate the optimality bound in Theorem 3, we preform a synthetic experiment that

show the impact the different parameters on the optimality gap. Table 1 summarizes the results of

this experiment. The examples in Table 1 were built in order to illustrate the bound in Theorem 3.

In the case in which C = 0, the lower bound on the optimality gap is equal to 63.21%. Hence, the

values in Table 1 are upper bounded by 63.21%. In the worst case, in which the base probability

model is not submodular, and in addition, the cross item effect is negative, that is, the items have

substitution effect, the lower bound on the optimality gap is as low as 40%. Nonetheless, in all of the

cases, even when the lower bound on the revenue was relatively low, the algorithm found a solution

that captures at least 96% of the optimal revenue. It is worth mentioning that while in all the cases

in Table 1, the algorithm finds a sub-optimal solution, in the vast majority of the cases that were

tested, the greedy algorithm, in fact, found the optimal solution.

Table 1 Optimality ratio on the algorithm’s revenue and the lower bound’s revenue for different settings of the

customer-trend demand model

Parameters Optimality Ratio
Cq δ π C Revenue of Algorithm Revenue Lower Bound
0 0 0.75 0 0.9728 0.6321
0 0 0.75 0 0.9745 0.6321
0.05 0 0.1 1000 0.9835 0.4443
0.05 0 0.13 1150 0.9816 0.4291
0 0.61 0.1 2440 0.9690 0.5210
0 0.61 0.2 2440 0.9667 0.5232
0.1 1 0.1 4960 0.9803 0.4054
0.1 1 0.2 5320 0.9789 0.3937
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Next, in Section 3.2.1, we show that for a special case, C = 0, and therefore, the function is simply

submodular. This case arises, for example, when all products are complements. In these cases, the

greedy algorithm finds a (1− 1
e
) approximation.

3.2.1. Submodularity of the Revenue Function for Complementary Items. Many

retailers use targeted promotions in order to increase store traffic, and as a result, increase revenue

from sales. This practice is based on the notion that targeted promotions draw customers into the

store in order to buy a particular item, however once these customers are in the store, they are

very likely to buy other items as well. This type of cross-item effect is referred to as the halo effect,

in which the demand for a specific item is increased when the price of another item is decreased.

Items with such impact on one another are referred to as complementary. In this section we consider

the special case of the Dynamic Promotion Targeting Optimization Problem with complementary

items. We show that for this type of problem, under some minor conditions, the revenue function in

problem (10) becomes submodular.

The following theorem characterizes a condition on the base demand function q, under which the

revenue function in problem (10) is submodular.

Theorem 4. In the case where (a) the base purchase probability function is a submodular function

of the promotion policy, and (b) the items are complementary, the revenue function in problem (10)

is submodular.

The proof of Theorem 4 can be found in Appendix B.2.

In Section 2, we suggested to use the logistic regression in order to model the base demand

function. In the case of complementary items, in the domain [0.5,1], the logistic regression is indeed

submodular. Therefore, for base probabilities that are above 0.5, the condition in Theorem 4 is

satisfied.

The following proposition describes how the submodularity leads to an analytical guarantee on

the optimality gap.

Proposition 1. In the case where (a) the base purchase probability function is a submodular func-

tion of the promotion policy, and (b) the items are complementary, the Adaptive-Greedy algorithm

in Algorithm 2 finds a solution that is at least (1− 1
e
) of the optimal solution.

Proposition 1 follows directly from Theorem 2.

Another special case of the Dynamic Promotion Targeting Optimization Problem is one in which

the retailer chooses a promotion period t a priori. We refer to this case as the Single-Period Dynamic

Promotion Targeting Optimization Problem. In this case, the retailer requires that all of the pro-

motions will be offered during the promotion period t. In any other period, the prices are set to be

the regular price. This requirement can be formulated by adding the following constraints into the
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problem formulation (10):
∑m

i=1

∑n

c=1 γcit ≤L and γciτ = 0,∀τ 6= t. In this case, we can identify a set

of problems for which the revenue function in problem (10) becomes linear. Hence, for these cases,

the Adaptive-Greedy algorithm in Algorithm 2 finds the optimal solution. This result is summarized

in the Corollary below.

Corollary 1. In the case of the Single-Period Dynamic Promotion Targeting Optimization

Problem, with m= 1, and no shipping cost, the Adaptive-Greedy algorithm in Algorithm 2 can find

the optimal solution.

The proof of Corollary 1 follows directly from the submodularity proof in Appendix B.2.

4. Results from a Large Fashion Retailer

In Sections 2 and 3 we described the demand prediction and Dynamic Promotion Targeting Opti-

mization models. By working with Oracle Retail, we have access to data from a large fashion retailer.

Using this data, we test our estimation process and the effectiveness of our optimization approach

in terms of revenue increase relative to the retailer’s existing practice.

In the first part of this section, we describe the dataset that is used in this case study. In the second

part of this section, we illustrate the impact of the customer trend model described in Section 2 on

prediction accuracy. Additionally, we test the validity of the instruments. This test shows that the

instruments are strong and thereby, we can regard the estimated customer-trend graph to describe

the causal relationship, which is necessary to target promotions correctly. In the last part of this

section, we illustrate the potential increase in revenue from using the Adaptive-Greedy algorithm

described in Section 3. We compare the revenue of our algorithm to that of the pricing policy that

the retailer used in practice.

4.1. Data Description

In order to test the estimation and optimization models that were suggested in Sections 2 and 3,

we use data from a large fashion retailer. This retailer operates 635 stores in the United States, and

Puerto Rico, with total revenues of two billion dollars a year.

The dataset that we present in this paper includes data that was collected over a period of roughly

two years from 20 stores in the state of Ohio. In addition, to analyze the robustness of our results, we

also have access to a smaller dataset from 4 stores in the state of Utah. These transaction datasets

contain customer linked purchases. Each purchase is associated with a customer identifier, store

location, item identifier, item’s color, item’s style, date of purchase, regular price of the item, and

the price that was paid for the item in this purchase. In order to prevent biases due to the sparsity

of the data, we aggregate the customers on their demographic features as well as the location in

which they made their purchases. For the same reason, we aggregate items on the style level, and
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time periods into weeks. We refer to Martec International, Inc (2011) for a detailed description of

the style level.

In many cases the life cycle of a style varies between the different stores. For example, consider

a store that often receives inventory earlier than other stores. Many of the styles in this store will

have a life cycle that starts earlier than the same style in other stores. In this case, the customers

who visit the first store would be more likely to buy earlier. As a result, our model could incorrectly

predict a customer trend effect emanating from these customers. In order to prevent biases due to

these differing life cycles, we focus on a set of styles that arrived to all of the relevant locations at

the same time. For this we use information about the available inventory of each style in each store.

In the following sections we present our results for two departments: Mens Knit Tops and Womens

Dressy Tops. As an example, the size of each dataset for Ohio is as follows:

1. Mens Knit Tops: the data in this department includes around 183,000 purchases of 324 different

styles that were made by at least 31,123 different customers.

2. Womens Dressy Tops: the data in this department includes around 185,000 purchases of 402

different styles that were made by at least 42,681 different customers.

4.2. Accuracy of the Customer Trend Demand Model

Here, we illustrate the impact of the customer trend demand model described in Section 2 on our

dataset. As previously discussed, we assume that the base purchase probability is described by a

logistic regression. Thus, the base purchase probability of (aggregated) customer c for an item i at

time t, given a promotion policy Φ, can be described as follows,

qΦ
cit =

1

1 + exp
(
−(β0 +β1WEEKt +β2LOCATIONc +β3rΦ

cit +
∑

i′ 6=i β
(i′)
4 rΦ

ci′t)
) ,

where WEEKt is an indicator variable for the week number associated with the time period t and

LOCATIONc is an indicator variable for the store location associated with customer c.

The parameters in the model above capture the following effects. First, the intercept β0 captures

the baseline probability. The seasonality effect on the weekly level is captured by β1, a vector of

length 52. The effect of the location of the store is captured by β2, a vector of length 20. The response

of the purchase probability to the item’s price is captured by β3. Last, the cross item effects are

captured by the values of β
(i′)
4 . Including these variables in the base purchase probability model,

allows our customer trend demand model to capture a variety of classical demand features.

Given the logistic base model, we estimate the customer-trend demand model by using the Trend-

Estimation algorithm described in Algorithm 1. When fitting the model, we use cross-validation to

determine the values of the memory factor M and the regularization factor λ. The customers and

items in the validation set are selected randomly, and the results in this section reflect the mean of

10 random splits.
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To evaluate the quality of the prediction model we consider the Weighted Mean Absolute Per-

centage Error (WMAPE). The WMAPE gives a weighted measure of the relative prediction error.

The weight of each error depends on the volume of the demand. In particular, this measure gives a

higher weight to observations where demand was higher. More formally, the WMAPE is given by

WMAPE =
1

n∑
t=1

At

n∑
t=1

At ·
∣∣∣∣At−FtAt

∣∣∣∣ ,
where At denotes the actual demand, and Ft denotes the forecasted demand at time t.

Table 2 presents the out-of-sample WMAPE of the predictions from the base demand model and

the customer trend demand model, for the two different departments and states. Table 2 shows

that incorporating the customer trend in the demand model leads to an absolute error improvement

between 2 to 7 percentage points (on average 5), which translates to a relative error improvement of

4% to 16% (on average 11%). These forecasting metrics are good when predicting fashion clothing

sales, where often sales are slightly harder to predict due to the irregularity of sales.

Table 2 Comparison of out-of-sample WMAPE of the base demand model and the customer trend demand

model for different departments in the states of Ohio and Utah

Demand Model
Department State Base Customer Trend Relative Improvement

Mens Knit Tops
Ohio 0.5213 0.4683 10.2%
Utah 0.5024 0.4845 3.6%

Womens Dressy Tops
Ohio 0.4548 0.3951 13.1%
Utah 0.4322 0.3636 15.9%

In Figure 4, we illustrate how the prediction accuracy (measured in out-of-sample WMAPE)

changes as a function of the memory M and the regularization parameter λ. Figure 4a shows that

as the memory M increases, the prediction error initially decreases, and then stabilizes. Note that

the case of no memory, M = 0, describes the base demand model, as there is no memory in the

base model. Hence, the drastic initial decrease emphasizes the importance of including the customer-

to-customer trend effect in the model. Accounting for the customer trend contributes greatly to

understanding the purchase behavior of customers. Figure 4b indicates that the relation between the

regularization parameter λ and the prediction error is not immediately clear. We observe that a larger

regularization parameter results in larger errors for the womens datasets, in contrast to the smaller

errors for mens datasets. Though, mostly, the error does not change significantly if the regularization

parameter is chosen wrongly. However, this still indicates that tuning the regularization parameter

is important. We remark that the regularization parameter also relates to how sparse the estimated

customer-to-customer trend network is: larger regularization results in sparser networks. Generally,

these graphs indicate that the mens network is sparser, while more customer relationships in the

womens network help with predicting.
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(a) Changes in memory M (b) Changes in regularization parameter λ

Figure 4 Figures showing the out-of-sample WMAPE for different departments in the states of Ohio and Utah as

the memory and regularization parameter increase

4.2.1. Causal Analysis. Next, we examine the validity of the instruments proposed in Section

2, and hence, whether the estimates can be presumed to be causal. The validity of the instruments

depends on whether they satisfy the two IV conditions. The first of these two conditions, that the

instrument is uncorrelated with the error term, can not be tested in the standard linear regression

model where the number of endogenous variables equals the number of instruments (Cameron and

Trivedi 2005). However, as our model differs from the standard linear regression model, we can

compute the sample correlation of the instruments and the error term. For our dataset, the largest

sample correlation roughly equals 0.0001, which provides strong evidence for the assumption that

the correlations between the instruments and errors are small.

The second condition, that the instruments are strongly correlated with the endogenous vari-

ables, can be tested through F-tests on the first-stage model (Cameron and Trivedi 2005). This

entails fitting the linear regression presented in equation (7) and applying an F-test on whether the

instruments have any explanatory power. In particular, the F-test considers the hypothesis whether

wc′′c′ = 0 for all c′′ and c′, and essentially tests whether the respective estimates ŵc′′c′ are too far

from 0. Generally, if the F-statistics exceed 10, there is significant evidence that the instruments are

strongly correlated with the endogenous variables. In Figure 5 we illustrate the F-statistics and the

WMAPE resulting from our dataset for different levels of the memory parameter M .

Most importantly, we note that the F-statistic is considerably larger than 10 for any reasonable

value of the memory parameter M (i.e., M > 0). This indicates that the instruments satisfy the

condition that they need to be strongly correlated with the endogenous variables. In addition, we

note that the F-statistic first increases as M increases and later slowly decreases. Especially, the

initial rapid increase signifies that yc′′,i,t−M−1 becomes a stronger instrument for
∑t−1

t′=t=M yc′it′ as
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(a) Statistics for Womens Dressy Tops (b) Statistics for Mens Knit Tops

Figure 5 Figures showing the F-statistic of the first-stage regression and the out-of-sample WMAPE for two

departments in the state of Ohio as the memory increases

M increases. Hence, purchases are not only good at explaining the next period’s purchases, but

even more so at explaining purchases during the M periods ahead. Beyond this point the F-statistic

stabilizes, indicating that these past purchases are not adding significant explanatory power further

into the future. As we would expect, the explanatory power of purchases diminishes after 6 weeks.

To select the right M , we see that the F-statistic is high (above 70 and 60 respectively) and the

WMAPE is low (below 40% and 47% respectively) around 4 to 6 weeks. Hence, a good selection for

the memory parameter would be between 4 to 6 periods.

4.3. Power of Dynamic Promotion Targeting Optimization

Next, we conduct an experiment with the goal of computing and testing the Adaptive-Greedy algo-

rithm described in Algorithm 2 in Section 3. For a fair comparison, we compare the targeting policy

that was found by the Adaptive-Greedy algorithm with the targeting policy that was used by the

retailer based on virtual profits. These virtual profits are obtained by plugging the promotion policy

(result of Adaptive-Greedy or current) into the customer trend demand model (5) to obtain the

virtual demand, and then multiplying this virtual demand by the prices in the corresponding pro-

motion policy. Essentially, this means that we assess the retailer’s policy on the same demand model

as the policy of the Greedy-Adaptive algorithm.

To run the Adaptive-Greedy algorithm, we need to determine the parameters of the problem

instances, and need to ensure they resemble the real-world instance. For each department and differ-

ing time horizons, we create an instance by selecting a set of representative items. From the dataset,
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we know the number of customers in each group, the inventory of each item and location, the ship-

ping cost, and the regular price of each item. Additionally, we compute the average promotion price

that was used by the retailer for each item, and the number of promotions that were offered.

The results of these experiments are shown in Table 3. The items in the selected set all lasted for 20

weeks. To analyze our policy’s effectiveness over time, we compare the virtual profits at 10, 15, and

20 weeks. This table shows that, on average, the policy generated by our Adaptive-Greedy algorithm

improves virtual profits by 3-11% relative to the policy that the retailer originally implemented. As

in the accuracy of the demand model, the customer trend effect is more impactful in the womens

dataset than the mens dataset. On average, at any time horizon, the profit improvement of the

womens dataset is roughly 5% larger than the mens dataset.

Noticeably, the revenue improvement is monotonically increasing with respect to time for the mens

dataset, because there is more time to optimize over. However, for the womens dataset there is a

small decrease when optimizing over 20 weeks instead of 15 weeks. Likely, this is due to the fact

that the Adaptive-Greedy algorithm assigned 13 promotions to the last 5 periods, compared to the

18 promotions that were offered by the retailer.

Finally, comparing the solution of each policy, we observe that the Adaptive-Greedy algorithm

shifted a large number of promotions from one item (that the retailer promoted) to another item

(that the Adaptive-Greedy algorithm preferred). The first item received 81 promotions from the

retailer, it received 33 promotions from the Adaptive-Greedy algorithm. The second item received

77 promotions from the Adaptive-Greedy algorithm, and only 29 promotions from the retailer. This

signifies that the Adaptive-Greedy algorithm detects the item that is more price-sensitive and for

which the customer trend effect is more impactful.

Table 3 Comparison of virtual profits gained by Adaptive-Greedy algorithm and retailer’s policy for different

departments and time horizons in Ohio

Virtual Profits
Department Time Horizon Adaptive-Greedy Retailer’s Policy Relative Improvement

Mens Knit Tops
10 1294.71 1248.83 3.7%
15 1929.89 1848.94 4.4%
20 2459.36 2333.13 5.4%

Womens Dressy Tops
10 334.17 309.10 8.1%
15 501.68 453.56 10.6%
20 665.33 604.95 10.0%

4.4. Insights and Discussion

In the following, we emphasize some of the insights from the previous discussion, and give some

additional insight into the estimated customer trend and the resulting promotion policy. The esti-

mation of the demand model validated the addition of the customer trend in two ways. Primarily,
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the out-of-sample WMAPE improved significantly. This demonstrates that the demand model is

more generalizable into the future with versus without the customer trend effect. In another test for

causality, we showed that the proposed instruments satisfy the IV conditions. The F-test of the first

stage regression strongly rejects the hypothesis that the instruments and the endogenous variables

are uncorrelated. Furthermore, we note that there is a natural value for the right length of the mem-

ory. Both the WMAPE and the F-test support the notion that the memory lasts for around 4 to 6

weeks long. Interestingly, we observe that including the customer trend effect is more impactful in

the women’s fashion dataset than in the men’s fashion dataset, signifying a trendier female customer

base.

Next to significant improvements in prediction accuracy and promotional profits, the model also

allows us to draw interesting insights into a customer base. The main reason being that the customer

trend model can be visualized as a network. The graphical representation of the customer trend model

shows how strongly customers affect each other. This visualization can help retail managers to under-

stand the targeted promotion policy. In Figure 6, we present the customer trend network estimated

from the Womens Dressy Tops dataset in Ohio. The vertices in this network indicate customer groups

associated with a particular store location. Missing edges indicate no relationship between the two

respective locations, while the thinner edges in the figure symbolize smaller customer-to-customer

trend probabilities between 0 and 0.1, and thicker edges represent larger customer-to-customer trend

probabilities between 0.1 and 0.5.

Figure 6 Customer trend network for the state of Ohio in which vertices are stores and the thickness of edges

illustrates the strength of the customer-to-customer trend
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From Figure 6, we observe that the network is roughly split into 2 segments. In the northeastern

cluster, the customer trend largely originates from the Cleveland area (Westlake and Mentor), while

Columbus and Dayton form the western cluster. Remarkably, the smaller city of Mentor has a large

effect on the larger city Youngstown. This effect can be explained by the high social status of Mentor

compared to the low social status of Youngstown, as Data USA (2019) depicts median incomes of

$70,625 and $26,295, and poverty rates of 5.34% and 36.8% respectively. According to economics

and sociology literature (Rege 2008), lower social classes wish to elevate their perceived social status

as it presents more economic and social opportunities. This explains, for example, that the lower

class in Youngstown mimics the fashion clothing of the higher social class in Mentor.

The Adaptive-Greedy algorithm also notices this as it mostly gives promotions to Canton, Colum-

bus, Mentor, and Westlake. For the reason that Mentor and Westlake have a strong customer trend

effect on Youngstown, the large city Youngstown does not receive a promotion, yet the smaller city

Mentor does. This means that in order to get Mentor, Westlake, and Youngstown to purchase, we

promote the less central locations that have an effect on a central location.

Altogether, the demand model’s accuracy and the optimization model’s profits, combined with

the ease-of-understanding have intrigued retail managers. As a result, Oracle Retail executives work

on productizing our models. The implementation of these models has a significant impact on Oracle

Retail clients, and more generally on the retail industry.
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Appendix A: Proofs of Section 2

A.1. Proof of Lemma 1

Lemma 1. Assume that yc′′,i,t−M−1 is a valid instrument. Let λ= 0 and let P be the solution to the following

system of linear equalities,

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (ycit− q̂cit) for all c′′ and c.

If 0≤ pc′c ≤ 1 for all c′ and c, then the algorithm estimates p̂c′c = pc′c.

Proof. In this proof, we will use the model written in the following matrix notation. Let

Y = (ycit)
c=1,...,n
i=1,...,m,t=M+2,...,Ti

, Q= (qcit)
c=1,...,n
i=1,...,m,t=M+2,...,Ti

, X = (

t−1∑
t′=t−M

ycit′)
c=1,...,n
i=1,...,m,t=M+2,...,Ti

,

Z = (yc,i,t−M−1)c=1,...,n
i=1,...,m,t=M+2,...,Ti

, P = (pc′c)
c=1,...,n
c′=1,...,n, W = (wc′c)

c=1,...,n
c′=1,...,n.

With this notation, step 2 of the Trend-Estimation algorithm runs as follows. The first stage estimate Ŵ of

problem (7) in step 2a is found by solving

min
0≤W≤M

n∑
c=1

(Xc−ZWc)
T (Xc−ZWc), (11)

then a first stage prediction is made X = ZŴ , and afterwards the final stage estimate P̂ of problem (8) in

step 2b of the Trend-Estimation algorithm is found by solving

min
0≤P≤1

n∑
c=1

(
(Yc− Q̂c−XPc)T (Yc− Q̂c−XPc) +λ||Pc||1

)
. (12)

In the first stage, solving problem (11) results in the OLS estimator,

Ŵc = (ZTZ)−1ZTXc for all c⇒ Ŵ = (ZTZ)−1ZTX.

This allows us to write the first stage prediction as X =ZŴ =Z(ZTZ)−1ZTX. In the final stage, given that

λ= 0, solving the unconstrained version of problem (12) results in the OLS estimator,

P c = (X
T
X)−1X

T
(Yc− Q̂c) for all c⇒ P = (X

T
X)−1X

T
(Y − Q̂).

Substituting X =Z(ZTZ)−1ZTX yields

P = (XTZ(ZTZ)−1ZTZ(ZTZ)−1ZTX)−1XTZ(ZTZ)−1ZT (Y − Q̂)

= (XTZ(ZTZ)−1ZTX)−1XTZ(ZTZ)−1ZT (Y − Q̂)

= (ZTX)−1(XTZ(ZTZ)−1)−1XTZ(ZTZ)−1ZT (Y − Q̂)

= (ZTX)−1ZT (Y − Q̂).

This implies that ZTXP =ZT (Y − Q̂), which means that for each c′′ and c,

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (ycit− q̂cit) .

If 0≤ pc′c ≤ 1 for all c′ and c, then the unconstrained estimator to problem (12) satisfies all the constraints,

and is therefore also the constrained estimator. Hence, if 0≤ pc′c ≤ 1 for all c′ and c, then p̂c′c = pc′c for all c′

and c. �
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A.2. Proof of Theorem 1

Consider the unconstrained estimator pc′c described in Lemma 1 that solves the following system of linear

equations, for all c′′ and c,

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (ycit− q̂cit) .

Substituting ycit = qcit +
∑n

c′=1 pc′c
∑t−1

t′=t−M yc′it′ + εcit yields

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1

(
qcit +

n∑
c′=1

pc′c

t−1∑
t′=t−M

yc′it′ + εcit− q̂cit

)
.

Consider the right-hand side of this equality,

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1

(
qcit +

n∑
c′=1

pc′c

t−1∑
t′=t−M

yc′it′ + εcit− q̂cit

)

=

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c +

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1εcit +

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (qcit− q̂cit) .

Observe that, outside of pc′c and pc′c, the first term of this expression is identical to the left-hand side of the

original equality. Thus, if we can show that the latter two terms of the above expression converge to 0 as

m→∞, then we can prove that the unconstrained estimator pc′c equals the ‘true’ parameter pc′c. Consider

the first of these two terms,

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1εcit =

m∑
i=1

(Ti−M − 1)
1∑m

i=1(Ti−M − 1)

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1εcit.

By the law of large numbers and the instrumental variables condition that the instrumental variable and the

error term are uncorrelated, E[yc′′,i,t−M−1εcit] = 0 for any c, c′′, i, and t, we establish that

1∑m

i=1(Ti−M − 1)

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1εcit→E[yc′′,i,t−M−1εcit] = 0 as m→∞.

Consider the second of these two terms,

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (qcit− q̂cit) .

Under the assumption that q̂cit→ qcit as m→∞, we establish that

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (qcit− q̂cit)→
m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (qcit− qcit) = 0 as m→∞.

Together, this means that as m→∞, the unconstrained estimator pc′c solves the following system of linear

equations,

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c.

Given that the instrument is valid, this means that pc′c → pc′c as m→∞. Knowing that 0 ≤ pc′c ≤ 1, this

implies that 0 ≤ pc′c ≤ 1 as m→∞. Hence, applying the result of Lemma 1, we obtain that p̂c′c → pc′c as

m→∞.
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Appendix B: Proofs of Section 3

B.1. Proof of Theorem 2

This proof share some similarities with the proof of Proposition 4.3 in Nemhauser et al. (1978).

Let us denote by Si, the subset that was chosen by the greedy algorithm at step i. We denote by S∗ =

{x∗1, x∗2, .., x∗L}, the optimal set of size L that maximizes the function f .

Due to monotonicity, for every i, f(S∗)≤ f(S∗ ∪Si). Therefore,

f(S∗)≤ (S∗ ∪Si) = f(S∗ ∪Si) +

L∑
j=1

f(Si ∪{x∗1, ..., x∗j})− f(Si ∪{x∗1, ..., x∗j})

= f(Si) +

L∑
j=1

f(Si ∪{x∗1, ..., x∗j})− f(Si ∪{x∗1, ..., x∗j−1})

Following C-Submodularity of the function f ,

f(Si ∪{x∗1, ..., x∗j})− f(Si ∪{x∗1, ..., x∗j−1})≤C + f(Si ∪{x∗j})− f(Si)

and therefore,

f(S∗)≤ f(Si) +

L∑
j=1

C + f(Si ∪{x∗j})− f(Si) = f(Si) +LC +

L∑
j=1

f(Si ∪{x∗j})− f(Si)

At each step i, the greedy algorithm chooses the element that maximizes the potential increase, therefore,

f(S∗)≤ f(Si) +LC +

L∑
j=1

f(Si ∪{x∗j})− f(Si)≤ f(Si) +LC +L(f(Si+1)− f(Si))

This can lead us to the following

f(S∗)− f(Si+1)≤ (1− 1

L
)(f(S∗)− f(Si)) +C

Applying to the last step of the algorithm,

f(S∗)− f(SL)≤ (1− 1

L
)f(S∗)− f(SL−1) +C ≤ (1− 1

L
)2((f(S∗)− f(SL−2)) + (1 + (1− 1

L
))C

≤ ...≤ (1− 1

L
)L(f(S∗)− f(S0)) +C

L−1∑
j=0

(1− 1

L
)j = (1− 1

L
)Lf(S∗) +C

L2(1− 1
e
)−L

L− 1

Therefore,

f(SL)≥ (1− 1

e
)f(S∗)−C

L2(1− 1
e
)−L

L− 1

B.2. Proof of Theorem 4

The proof of Theorem 4 is outlined as follows. In the first part of the proof, we analyze and simplify the

potential function ρ(φ,Φ), that was introduced in Algorithm 2. Then, in the second part of the proof, we

introduce the marginal potential function ∂ρ(φ, φ̃,Φ) = ρ(φ,Φ ∪ φ̃) − ρ(φ,Φ), which captures the marginal

change in the potential function as a result of changes in the policy Φ. In the second part of the proof we

consider a simple case in which the shipping cost is equal to 0 for all items and locations. We show that the

marginal potential function in these special cases is always non-positive and therefore, the following shows

that the revenue function is submodular,

∂ρ≤ 0⇔ ρ(φ,Φ∪ φ̃)− ρ(φ,Φ)≤ 0⇔R(Φ∪{φ, φ̃})−R(Φ∪ φ̃)−R(Φ∪φ) +R(Φ)≤ 0

Last, in the third part, we use the results of the second part in order to show submodularity for the general

case.
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Step.1 We begin by analyzing the potential function ρ.

In this proof we make use of the potential function ρ,

ρ(φ,Φ) =R(Φ∪φ)−R(Φ) = (13)

m∑
i=1

n∑
c=1

T∑
t=1

rΦ∪{φ}
cit Ncb

Φ∪{φ}
cit −

m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ}
cit − Iil

+

· sil−

m∑
i=1

n∑
c=1

T∑
t=1

rΦ
citNcb

Φ
cit +

m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+

· sil

The sum in (13), can be rewritten as a sum of 7 functions

ρ(φ,Φ) =R(Φ∪φ)−R(Φ) = (14)

m∑
i=1

n∑
c=1

Nc

tφ−1∑
t=1

(rΦ∪{φ}
cit bΦ∪{φ}cit − rΦ

citb
Φ
cit)︸ ︷︷ ︸

ft<tφ (φ,Φ)

+

m∑
i=1

∑
c 6=cφ

Nc(r
Φ∪{φ}
citφ

bΦ∪{φ}citφ
− rΦ

citφ
bΦcitφ)

︸ ︷︷ ︸
fc 6=cφitφ (φ,Φ)

+ (15)

Ncφ(rΦ∪{φ}
cφiφtφ

bΦ∪{φ}cφiφtφ
− rΦ

cφiφtφ
bΦcφiφtφ)︸ ︷︷ ︸

fcφiφtφ
(φ,Φ)

+

n∑
c=1

Nc

T∑
t=tφ+1

(rΦ∪{φ}
ciφt

bΦ∪{φ}ciφt
− rΦ

ciφt
bΦciφt)︸ ︷︷ ︸

fciφt>tφ
(φ,Φ)

+ (16)

∑
i 6=iφ

Ncφ(rΦ∪{φ}
cφitφ

bΦ∪{φ}cφitφ
− rΦ

cφitφ
bΦcφitφ)

︸ ︷︷ ︸
fcφ,i 6=iφ,tφ (φ,Φ)

+

m∑
i 6=iφ

n∑
c=1

Nc

T∑
t=tφ+1

(rΦ∪{φ}
cit bΦ∪{φ}cit − rΦ

citb
Φ
cit)︸ ︷︷ ︸

fc,i 6=iφ,t>tφ (φ,Φ)

+ (17)

m∑
i=1

NL∑
l=1

−

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ}
cit − Iil

+

· sil +
m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+

· sil︸ ︷︷ ︸
fshipping fees(φ,Φ)

= (18)

(
rΦ∪{φ}
cφiφtφ

bΦ∪{φ}cφiφtφ
− rΦ

cφiφtφ
bΦcφiφtφ

)
Ncφ︸ ︷︷ ︸

fcφiφtφ
(φ,Φ)

+

n∑
c=1

T∑
t=tφ+1

(
bΦ∪{φ}ciφt

− bΦciφt
)
rΦ
ciφt

Nc︸ ︷︷ ︸
fciφt>tφ

(φ,Φ)

+ (19)

∑
i 6=iφ

(
bΦ∪{φ}cφitφ

− bΦcφitφ
)
rΦ
cφitφ

Ncφ︸ ︷︷ ︸
fcφ,i 6=iφ,tφ (φ,Φ)

+
∑
i 6=iφ

n∑
c=1

T∑
t=tφ+1

(
bΦ∪{φ}cit − bΦcit

)
rΦ
citNc︸ ︷︷ ︸

fc,i 6=iφ,t>tφ (φ,Φ)

− (20)

m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ}
cit − Iil

+

−

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+ · sil︸ ︷︷ ︸
fshipping fees(φ,Φ)

(21)

In what follows, we analyze the changes in each of the 5 functions when we make changes in the promotion

plan Φ. In order to simplify the 5 functions, we use Lemma 2. Lemma 2 also make use of the following

notations.

Given a trend graph p, we denote by Pj(c, c
′), the set of all paths of length exactly j, that are starting at

node c and ending at node c′. We use π to denote a path π ∈ Pj(c, c′). The length of path π is denoted

by |π|, and the ith node in path π is denoted by πi.
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The following lemma reveals, the changes in the purchase probability of a given customer (c) and for

a given item (i) at a given time (t), when we make a small changes in the base probability of possibly

another customer (c′) at an earlier time (t′ < t) for the same item (i). We then use this insight in order

to simplify the 5 functions in (14).

Lemma 2. Without loss of generality, assume that the purchase probability bcit is being decreased by

ε. Let us denote by bεc′i′t′ , the purchase probability for customer c′ and item i′ at period t′, given that the

purchase probability of customer c for item i at time t is bεcit = bcit− ε. Then for every c′, i′ = i, t′ > t,

bc′it′ − bεc′it′ = (bcit− bεcit)
∑

π∈Pt′−t(c,c′)

|π|−1∏
j=1

pπj ,πj+1
(22)

Proof. In the simple case where t′ = t+ 1, the gap in (22) can be easily calculated.

bc′it′ − bεc′it′ = (bcit− bεcit)pc,c′ (23)

On the other hand, if t′ > t+ 1, the gap in (22) can be calculated as follows.

bc′it′ − bεc′it′ =
n∑

c′′=1

(bc′′it′−1− bεc′′it′−1)pc′′,c′

We observe that for any τ < t, bc′′iτ − bεc′′iτ = 0 ∀c′′. For τ = t, bc′′iτ − bεc′′iτ = 0 ∀c′′ 6= c. Using (23) as

the base step, we can inductively find

bc′it′ − bεc′it′ = (bcit− bεcit)
∑

π∈Pt′−t(c,c′)

|π|−1∏
j=1

pπj ,πj+1

Then, the potential function in (14) becomes

ρ(φ,Φ) =R(Φ∪φ)−R(Φ) =

(24)(
rΦ∪{φ}
cφiφtφ

bΦ∪{φ}cφiφtφ
− rΦ

cφiφtφ
bΦcφiφtφ

)
Ncφ︸ ︷︷ ︸

fcφiφtφ
(φ,Φ)

+

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ}cφiφtφ
− bΦcφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc

︸ ︷︷ ︸
fciφt>tφ

(φ,Φ)

(25)∑
i 6=iφ

(
bΦ∪{φ}cφitφ

− bΦcφitφ
)
rΦ
cφitφ

Ncφ︸ ︷︷ ︸
fcφ,i 6=iφ,tφ (φ,Φ)

+
∑
i 6=iφ

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ}cφitφ
− bΦcφitφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
citNc

︸ ︷︷ ︸
fc,i 6=iφ,t>tφ (φ,Φ)

(26)

−
m∑
i=1

NL∑
l=1

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ}
cit − Iil

+

−

 ∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

+ · sil︸ ︷︷ ︸
fshipping fees(φ,Φ)

(27)
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Step.2 In the second part of this proof, we analyze how the potential function ρ(φ,Φ) changes, with changes in

the policy Φ. In this part we consider the special case in which there is no shipping cost.

Let us denote by ∂ρ(φ, φ̃,Φ), the marginal potential function,

∂ρ(φ, φ̃,Φ) = ρ(φ,Φ∪{φ̃})− ρ(φ,Φ) = (28)

fcφiφtφ(φ,Φ∪{φ̃})− fcφiφtφ(φ,Φ) + fciφt>tφ(φ,Φ∪{φ̃})− fciφt>tφ(φ,Φ)+

fcφ,i 6=iφ,tφ(φ,Φ∪{φ̃})− fcφ,i6=iφ,tφ(φ,Φ) + fc,i 6=iφ,t>tφ(φ,Φ∪{φ̃})− fc,i 6=iφ,t>tφ(φ,Φ)

In order to show that the revenue function R is submodular, we show that the marginal potential function

in (28) is non-positive. We show the non-positivity for each of the 4 components of the potential function

separately.

(a) fcφiφtφ(φ,Φ∪{φ̃})−fcφiφtφ(φ,Φ). This component of the marginal potential function in (28) is equal

to, (
rΦ∪{φ,φ̃}
cφiφtφ

bΦ∪{φ,φ̃}cφiφtφ
− rΦ∪{φ̃}

cφiφtφ
bΦ∪{φ̃}cφiφtφ

− rΦ∪{φ}
cφiφtφ

bΦ∪{φ}cφiφtφ
+ rΦ

cφiφtφ
bΦcφiφtφ

)
Ncφ .

We first note that rΦ∪{φ,φ̃}
cφiφtφ

= rΦ∪{φ}
cφiφtφ

and similarly, rΦ∪{φ̃}
cφiφtφ

= rΦ
cφiφtφ

. In addition, rΦ∪{φ,φ̃}
cφiφtφ

≤ rΦ
cφiφtφ

.

Therefore, (
rΦ∪{φ,φ̃}
cφiφtφ

bΦ∪{φ,φ̃}cφiφtφ
− rΦ∪{φ̃}

cφiφtφ
bΦ∪{φ̃}cφiφtφ

− rΦ∪{φ}
cφiφtφ

bΦ∪{φ}cφiφtφ
+ rΦ

cφiφtφ
bΦcφiφtφ

)
Ncφ = (29)(

rΦ∪{φ,φ̃}
cφiφtφ

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ}cφiφtφ

)− rΦ∪{φ̃}
cφiφtφ

(bΦ∪{φ̃}cφiφtφ
− bΦcφiφtφ)

)
Ncφ ≤ (30)

rΦ∪{φ,φ̃}
cφiφtφ

(
bΦ∪{φ,φ̃}cφiφtφ

− bΦ∪{φ}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

+ bΦcφiφtφ

)
Ncφ (31)

Where the last inequality is due to the complementary assumption and the fact that rΦ∪{φ,φ̃}
cφiφtφ

=

rΦ∪{φ̃}
cφiφtφ

. Last, the trend component in both purchase probabilities in the potential function ρ(φ,Φ∪
{φ̃}) are equal. Same is true for ρ(φ,Φ). Therefor,

rΦ∪{φ,φ̃}
cφiφtφ

(
bΦ∪{φ,φ̃}cφiφtφ

− bΦ∪{φ}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

+ bΦcφiφtφ

)
Ncφ =

rΦ∪{φ,φ̃}
cφiφtφ

(
qΦ∪{φ,φ̃}
cφiφtφ

− qΦ∪{φ}
cφiφtφ

− qΦ∪{φ̃}
cφiφtφ

+ qΦ
cφiφtφ

)
Ncφ ≤ 0

The last inequality is due to the submodularity of the base probability function.

(b) fciφt>tφ(φ,Φ ∪ {φ̃})− fciφt>tφ(φ,Φ). This component of the marginal potential function in (28) is

equal to,

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ∪{φ̃}
ciφt

Nc−

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ}cφiφtφ
− bΦcφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc

For every (c, iφ, t) 6= (cφ̃, iφ̃, tφ̃) 6= (cφ, iφ, tφ), rΦ
ciφt

= rΦ∪{φ̃}
ciφt

. However, in the case where (c, iφ, t) =

(cφ̃, iφ̃, tφ̃), rΦ
ciφt

> rΦ∪{φ̃}
ciφt

. Since promotion (cφiφtφ) can only increase the probability that customer

cφ will buy item iφ at time tφ,

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ∪{φ̃}
ciφt

Nc−
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n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ}cφiφtφ
− bΦcφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc ≤

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

− bΦ∪{φ}cφiφtφ
+ bΦcφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc

Since promotion φ can not impact the trend component in bcφiφtφ , regardless of the promotion plan,

we can simplify the function above as follows.

n∑
c=1

T∑
t=tφ+1

(qΦ∪{φ,φ̃}
cφiφtφ

− qΦ∪{φ̃}
cφiφtφ

− qΦ∪{φ}
cφiφtφ

+ qΦ
cφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc (32)

Due to the submodularity of the base probability function q, the function in (32) is always negative.

(c) fcφ,i6=iφ,tφ(φ,Φ∪{φ̃})− fcφ,i 6=iφ,tφ(φ,Φ). We provide an analysis for each item i separately. The case

where cφ̃ = cφ, iφ̃ = i and tφ̃ = tφ, this case is identical to case (Step.2a). Otherwise, we note that

rΦ∪{φ,φ̃}
cφitφ

= rΦ∪{φ}
cφitφ

= rΦ∪{φ̃}
cφitφ

= rΦ
cφitφ

. In addition, the trend component in both purchase probabilities

in the potential function ρ(φ,Φ∪{φ̃}) are equal. Same is true for ρ(φ,Φ). Therefore,(
rΦ∪{φ,φ̃}
cφitφ

bΦ∪{φ,φ̃}cφitφ
− rΦ∪{φ̃}

cφitφ
bΦ∪{φ̃}cφitφ

− rΦ∪{φ}
cφitφ

bΦ∪{φ}cφitφ
+ rΦ

cφitφ
bΦcφitφ

)
Ncφ =(

rΦ∪{φ,φ̃}
cφitφ

(qΦ∪{φ,φ̃}
cφitφ

− qΦ∪{φ}
cφitφ

− qΦ∪{φ̃}
cφitφ

+ qΦ
cφitφ

)
)
Ncφ ≤ 0

Where the last inequality is due to the submodularity of q.

(d) fc,i 6=iφ,t>tφ(φ,Φ∪{φ̃})−fc,i 6=iφ,t>tφ(φ,Φ). We provide an analysis for each item i separately. Similarly

to the argument in (Step.2b), this component of the marginal potential function in (28) is bounded

by

n∑
c=1

T∑
t=tφ+1

(bΦ∪{φ,φ̃}cφitφ
− bΦ∪{φ̃}cφitφ

− bΦ∪{φ}cφitφ
+ bΦcφitφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
citNc

Since promotion φ can not impact the trend component in bcφitφ at time tφ, regardless of the

promotion plan, we can simplify the function above as follows.

n∑
c=1

T∑
t=tφ+1

(qΦ∪{φ,φ̃}
cφitφ

− qΦ∪{φ̃}
cφitφ

− qΦ∪{φ}
cφitφ

+ qΦ
cφitφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
citNc (33)

Due to the submodularity of the base probability function q, the function in (33) is always non-

positive.

Step.3 Next we show that these results can be extended to the general case of positive shipping fees.

In the general case, we consider the marginal potential function

∂ρ(φ, φ̃,Φ) = ρ(φ,Φ∪{φ̃})− ρ(φ,Φ) = (34)

fcφiφtφ(φ,Φ∪{φ̃})− fcφiφtφ(φ,Φ) + fciφt>tφ(φ,Φ∪{φ̃})− fciφt>tφ(φ,Φ)+

fcφ,i 6=iφ,tφ(φ,Φ∪{φ̃})− fcφ,i 6=iφ,tφ(φ,Φ) + fc,i 6=iφ,t>tφ(φ,Φ∪{φ̃})− fc,i 6=iφ,t>tφ(φ,Φ)+

fshipping fees(φ,Φ∪{φ̃})− fshipping fees(φ,Φ)
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We now show that for every item i and location l, the component in (34) that corresponds with item i

and location l is always non-positive. For the sake of brevity, we use ASΦ
il to denote difference between

the number of units of item i that were sold in location l according to promotion plan Φ, and the initial

inventory for item i at location l. Formally,

ASΦ∪{φ,φ̃}
il =

∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ,φ̃}
cit − Iil , ASΦ∪{φ̃}

il =
∑

c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ̃}
cit − Iil

ASΦ∪{φ}
il =

∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ}
cit − Iil , ASΦ

il =
∑

c:`(c)=l

T∑
t=1

Ncb
Φ
cit− Iil

For each combination of item i and location l, we consider the following distinct cases.

(a) The first case is where ASΦ∪{φ̃}
il > 0. Here once again, we consider two cases.

i. The first case is where ASΦ∪{φ}
il > 0. In this case,

fshipping fees(φ,Φ∪{φ̃})− fshipping fees(φ,Φ)≤ (35)

−ASΦ∪{φ,φ̃}
il +ASΦ∪{φ̃}

il +ASΦ∪{φ}
il −ASΦ

il . (36)

The expression in 35 is not necessarily non-positive. Nevertheless, since rΦ
cit > sil, for item i at

location l, the revenue function can be re-written as follows,∑
c:`(c)=l

T∑
t=1

Ncb
Φ
cit(r

Φ
cit− sil) + Iilsil

This allows us to use the results from part (Step.2) of this proof, and claim that the revenue

function is non-positive for these cases.

ii. In the second case, ASΦ∪{φ}
il ≤ 0,

fshipping fees(φ,Φ∪{φ̃})− fshipping fees(φ,Φ)≤−ASΦ∪{φ,φ̃}
il +ASΦ∪{φ̃}

il = (37)− ∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ,φ̃}
cit + Iil +

∑
c:`(c)=l

T∑
t=1

Ncb
Φ∪{φ̃}
cit − Iil

 · sil (38)

Due to the assumption of complementary items, promotions can never decrease the number of

sold unites. Therefore, the function in (38) is always non-positive.

(b) The second case is the case where ASΦ∪{φ̃}
il < 0. Here again we can consider two cases,

i. The first case is where ASΦ∪{φ}
il > 0. This case is symmetrical to the case in Step.3(a)ii.

ii. In the second case, ASΦ∪{φ}
il ≤ 0. In this case,

fshipping fees(φ,Φ∪{φ̃})− fshipping fees(φ,Φ)≤ 0 (39)

Under the assumption of complementary, all other cases are not possible. Therefore, in all cases, the

marginal potential function is non-positive.
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Appendix C: Supplementary Material

C.1. Finite-Sample Guarantee on Estimation Error

Besides the fact that yc′′,i,t−M−1 needs to be a valid instrument, we need to make additional assumptions to

prove a probabilistic finite-sample guarantee on the error of the estimator. First, the base purchase probability

is independent of the item and only positive in the first period: qcit = qc for t= 1 and qcit = 0 for t > 1. Through

this assumption, we are guaranteed that all purchases after the initial period are made because of the customer

trend effect. This allows us in finding a closed-form solution for the estimated of the customer-to-customer

trend probabilities.

Second, we assume that the customer trend network is known to be a forest. If a directed graph is a forest,

this means that each vertex in the graph has at most one incoming edge. As shown in Figure 2b, the customer

trend can be represented by such a directed graph. In the case that this network is a forest, every customer

is affected by at most one other customer, i.e., for each customer c there is one customer c′ such that pc′c ≥ 0

while pc′′c = 0 for all other customers c′′. Commonly, the customer c′ that affects the purchase decision of

customer c is called the parent of customer c, which we denote by π(c) = c′. As with the assumption on the

base purchase model, this assumption on the customer trend model is needed for establishing the closed-

form expression of the customer-to-customer trend estimates. Together these assumptions are reasonable for

a number of scenarios. In the fashion setting, this would be the case if celebrities have many dedicated fashion

followers, but are themselves not affected by their followers or other celebrities.

Furthermore, in line with the instrument being valid, we also assume that each customer purchased at least

one item during its first time period. Naturally, customers are only present in the transaction dataset when

they make a purchase, and likely they have made a purchase in the first time period as well.

Finally, the memory is assumed to last for one time period, meaning that M = 1. For example, if the time

periods last a week, this means that a purchase from one week can only affect other customers’ purchase

decisions in the next week. In the case of celebrities this could make sense, because there is a small time

window in which celebrities flaunt the fashion clothing.

Given these assumptions, we can prove Theorem 5 that establishes a finite-sample guarantee on the estima-

tion error between the estimated and ‘true’ customer-to-customer trend probabilities with high probability.

This result shows that the probability of an error is inversely proportional to the number of distinct items in

the dataset. Hence, as expected, a larger error becomes less likely when the dataset grows in size.

Theorem 5. Assume that yc′′,i,t−M−1 is a valid instrument, that the base purchase probability qcit is inde-

pendent of the item and only positive in the first period, that the customer trend network is known to be a

forest, that at least one purchase is made by each customer in the first period, and that the memory lasts

one period. Let λ= 0 and consider the ‘true’ model (5), then the difference between the estimated and ‘true’

customer-to-customer trend probabilities is bounded with high probability by

P(|p̂π(c),c− pπ(c),c|> ε)≤
1

4ε2mqπ(c)

.
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Proof. Given that at least one purchase is made and that the initial base purchase probability is indepen-

dent of the item, we note that
m∑
i=1

yπ(c),i,1 ∼ 1 +Bin
(
m− 1, qπ(c)

)
and

m∑
i=1

Ti∑
t=3

ycit|
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x∼Bin
(
x,pπ(c),c

)
.

To bound this tail probability, let us substitute in the estimator from Lemma 4, after which we condition on

the value of the denominator in the estimator,

P(|p̂π(c),c− pπ(c),c|> ε) = P

(∣∣∣∣∣
∑m

i=1

∑Ti
t=3 ycit∑m

i=1

∑Ti
t=3 yπ(c),i,t−1

− pπ(c),c

∣∣∣∣∣> ε
)

=

∑m
i=1(Ti−2)∑
x=1

P

(∣∣∣∣∣
∑m

i=1

∑Ti
t=3 ycit
x

− pπ(c),c

∣∣∣∣∣> ε|
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x

)
P

(
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x

)
.

Next, we can apply Chebyshev’s inequality to the first probability term and plug in the variance of a binomial

random variable,

P(|p̂π(c),c− pπ(c),c|> ε)≤

∑m
i=1(Ti−2)∑
x=1

Var(
∑m

i=1

∑Ti
t=3 ycit|

∑m

i=1

∑Ti
t=3 yπ(c),i,t−1 = x)

x2ε2
P

(
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x

)

=

∑m
i=1(Ti−2)∑
x=1

xpπ(c),c(1− pπ(c),c)

x2ε2
P

(
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x

)

=
pπ(c),c(1− pπ(c),c)

ε2

∑m
i=1(Ti−2)∑
x=1

1

x
P

(
m∑
i=1

Ti∑
t=3

yπ(c),i,t−1 = x

)

=
pπ(c),c(1− pπ(c),c)

ε2
E

[
1∑m

i=1

∑Ti
t=3 yπ(c),i,t−1 + 1

]

≤
pπ(c),c(1− pπ(c),c)

ε2
E
[

1∑m

i=1 yπ(c),i,1 + 1

]
.

We note that in the last inequality, the expectation is upper bounded by shrinking the denominator from∑Ti
t=3 yπ(c),i,t−1 to yπ(c),i,1. Next, we use the result of Lemma 3 to bound the expectation.

Lemma 3. For X ∼Bin(n,p) we have,

E
[

1

X + 1

]
=

1− (1− p)n+1

(n+ 1)p

Proof. Given that X ∼Bin(n,p), the expectation is given by

E
[

1

X + 1

]
=

n∑
x=0

1

x+ 1

n!

x!(n−x)!
px(1− p)n−x =

n∑
x=0

n!

(x+ 1)!(n−x)!
px(1− p)n−x

=
1

(n+ 1)p

n∑
x=0

(n+ 1)!

(x+ 1)!(n−x)!
px+1(1− p)n−x =

1

(n+ 1)p

n+1∑
x=1

(n+ 1)!

x!(n−x+ 1)!
px(1− p)n−x+1

=
1− (1− p)n+1

(n+ 1)p
.

�

Using Lemma 3, we obtain the following

P(|p̂π(c),c− pπ(c),c|> ε)≤
pπ(c),c(1− pπ(c),c)

ε2
E
[

1∑m

i=1 yπ(c),i,1 + 1

]
=
pπ(c),c(1− pπ(c),c)

ε2
1− (1− qπ(c))

m

mqπ(c)

.

Finally, we can use the fact that pπ(c),c(1− pπ(c),c)≤ 1
4

and 1− (1− qπ(c))
m ≤ 1 for any m> 0 to obtain

P(|p̂π(c),c− pπ(c),c|> ε)≤
1

4ε2mqπ(c)

.

�
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In this proof, we use the following Lemma 4 that establishes a closed-form expression for our estimator given

the assumptions.

Lemma 4. Assume that yc′′,i,t−M−1 is a valid instrument, that the base purchase probability qcit is only

positive in the first period, and that the customer trend network is known to be a forest. Let λ= 0, then the

Trend-Estimation algorithm estimates the customer-to-customer trend probabilities as

p̂c′c =


∑m
i=1

∑Ti
t=M+2

y
π2(c),i,t−M−1

ycit∑m
i=1

∑Ti
t=M+2

∑t−1

t′=t−M
y
π2(c),i,t−M−1

yπ(c),i,t′
if c′ = π(c)

0 if c′ 6= π(c)
.

Specifically, if the memory lasts for only one period,

p̂c′c =


∑m
i=1

∑Ti
t=3 ycit∑m

i=1

∑Ti
t=3 yπ(c),i,t−1

if c′ = π(c)

0 if c′ 6= π(c)
.

Proof. Consider the unconstrained estimator pc′c described in Lemma 1 that solves the following system

of linear equations, for all c′′ and c,

n∑
c′=1

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yc′′,i,t−M−1yc′it′pc′c =

m∑
i=1

Ti∑
t=M+2

yc′′,i,t−M−1 (ycit− q̂cit) .

Given that the base purchase probability is 0 and that the customer trend network forms a known directed

forest, we can write for all c,

m∑
i=1

Ti∑
t=M+2

t−1∑
t′=t−M

yπ2(c),i,t−M−1yπ(c),i,t′pπ(c),c =

m∑
i=1

Ti∑
t=M+2

yπ2(c),i,t−M−1ycit.

In turn, given that the instrument is valid, this implies that

pπ(c),c =

∑m

i=1

∑Ti
t=M+2 yπ2(c),i,t−M−1ycit∑m

i=1

∑Ti
t=M+2

∑t−1
t′=t−M yπ2(c),i,t−M−1yπ(c),i,t′

.

We note that 0≤ pπ(c),c ≤ 1, because both the numerator and denominator are positive as well as the fact that

the denominator is always at least as large as the numerator. Hence, applying the result of Lemma 1 yields

that estimation algorithm 1 results in p̂c′c = pc′c. �

C.2. NP Hardness of the Dynamic Promotion Targeting Optimization Problem

In what follows, we describe a simple polynomial time reduction from the Set-Cover problem to the Dynamic

Promotion Targeting Optimization Problem. We show that if we can solve the Dynamic Promotion Targeting

Optimization Problem in polynomial time, then we can solve the Set-Cover problem in polynomial time as

well. This is in contradiction to the fact that the Set-Cover problem is NP-hard problem, as it is one of Karp’s

21 NP-complete problems (Karp (1975)). The Set-Cover problem is defined as follows.

Definition 2 (Set-Cover). Given a set of elements Ω = {1,2, ..., n}, referred to as the universe and a

collection S of m sets whose union equals the universe, and a constant K, the decision version of the set cover

problem is to identify a sub-collection of S, of size at most K, whose union equals the universe.

Next we define a polynomial time reduction from the Set-Cover problem to the Dynamic Promotion Target-

ing Optimization Problem. This reduction defines a set of steps, such that given an instance of the Set-Cover

problem, denoted by ISC , allows us to construct an instance of the Dynamic Promotion Targeting Optimiza-

tion Problem, denoted by ISPT . Then, in Lemma 5, we show that given an optimal solution to the Dynamic
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Promotion Targeting Optimization Problem, we can construct an optimal solution to the Set-Cover prob-

lem, and therefore, the Dynamic Promotion Targeting Optimization Problem is just as hard as the Set-Cover

problem.

Given an instance of the Set-Cover problem, ISC = {Ω,S,K}, we construct an instance of the Dynamic

Promotion Targeting Optimization Problem, ISPT , as follows. We consider a problem with a single item m= i,

with time horizon T = 2, and n= |S|+ |Ω| customers. We construct two types of customers. The first type,

also referred to as Set-Customers, consists of |S| customers, where each customer corresponds to a set in

S. The second type, also referred to as Element-Customers, consists of |Ω| customers, where each customer

corresponds to an element in Ω.

The price ladder is d1 = {d1 = 0, d0
1 = 1}. Table 4 illustrates the base probabilities for the different price

levels, different periods, and different types of customers.

Table 4 Caption

Set Costumers Element Costumers
t= 1 t= 2 t= 1 t= 2

rc1t = d0
1 0 0 0 0

rc1t = d1 1 0 0 0

Each store location is associated with a single customer, and the initial inventory is equal to 1 for all the

different locations. The shipping cost s1l is equal to ∞ for all locations.

We construct the trend graph as follows. There exists a trend from each set customer cs to all of the element

costumers ci such that ωi ∈ Ss (where ωi is the element that is associated with costumer ci, and Ss is the

set that is associated with costumer cs). The probability pc,c′ for each such trend is equal to 1. For each

element costumer ci, we demote by Si, the set of Set-Customers cs such that there exists a trend from cs to

ci. according to the network that was described above.

Last, we set the limit on the number of promotions, L to be equal to K.

Lemma 5. There exists an optimal solution Φ∗ to ISPT , such that R(Φ∗) = n, if and only if there exist a

sub-collection of S, of size at most K, whose union equals the universe.

Proof. We first make the following observations:

1. The high shipping cost implies that under no circumstance an optimal solution will encore a backorder.

Therefore, each customer can buy at most 1 unit of item 1.

2. Promotion price has no affect on the purchase probability of customers of type Element-Customers.

Therefore, an optimal solution will never offer a promotion to customers of type Element-Customers.

Similarly, an optimal solution will not offer a promotion to customers of type Set-Customers for the first

period.

3. Since there are no incoming trends into customers of type Set-Customers, and the base probability is

equal to 0 when there is no promotion price, a customer of type Set-Customers purchase if and only if

he was offered a promotion. This can happen only in the first period.
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4. A customer c of type Element-Customers can purchase only in the second period, if and only if, one of

the Set-Customers that influences customer c, purchased.

Building on this set of observations, we can rewrite the revenue function achieved by Φ∗ as follows:

R(Φ∗) =
∑

i∈Ω:∃φ∈Φ∗,cφ∈Si

1 · 1 = |{i∈Ω : ∃φ∈Φ∗, cφ ∈ Si}| (40)

We observe that the expression above is equal to the number of Element-Customers ci such that at least one

of the customers in the set SI was offered a promotion according to Φ∗.

The optimal solution to ISPT that maximizes the revenue function in (40) is one that maximizes the number

of Element-Customers ci for which bΦ
∗

c12 = 1.

Let us assume that there exists a promotion plan Φ of size at most L such that R(Φ∗) = n. In other words,

for each Element Customer ci there exists a Set-Customers cs ∈ Si that was offered a promotion according to

Φ. Then, the sub-collection of S that corresponds to the Set-Customers who was offered promotions, is of size

at most K, and covers the universe.

Similarly, given a sub-collection S of S that covers the universe, we can construct a promotion policy Φ,

such that each customer that correspond to a set in S is offered a promotion in the first period. Then, the

revenue function R(Φ) = n.

C.3. Proof of Theorem 3

The proof of Theorem 3 is outlined as follows. In the first part, we consider the case of,

f(Y ∪{x})− f(Y )≤C + f(X ∪{x})− f(X),

where |Y \X|= 1. Then, in the second part, we extend the result to the general case in which |Y \X| ≤L.

Step.1 We begin by analyzing the simple case in which |Y \X| = 1. The proof of part follows a similar lines

to the proof of Theorem 4. We calculate an upper bound for each component of the marginal potential

function in (28).

(a) fcφiφtφ(φ,Φ∪{φ̃})−fcφiφtφ(φ,Φ). This component of the marginal potential function in (28) is equal

to the formulation in (30). (
rΦ∪{φ,φ̃}
cφiφtφ

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ}cφiφtφ

)− rΦ∪{φ̃}
cφiφtφ

(bΦ∪{φ̃}cφiφtφ
− bΦcφiφtφ)

)
Ncφ =(

rΦ∪{φ,φ̃}
cφiφtφ

(bΦ∪{φ,φ̃}cφiφtφ
− bΦ∪{φ}cφiφtφ

− bΦ∪{φ̃}cφiφtφ
+ bΦcφiφtφ) + (rΦ∪{φ,φ̃}

cφiφtφ
− rΦ∪{φ̃}

cφiφtφ
)(bΦ∪{φ̃}cφiφtφ

− bΦcφiφtφ)
)
Ncφ =(

di(b
Φ∪{φ,φ̃}
cφiφtφ

− bΦ∪{φ}cφiφtφ
− bΦ∪{φ̃}cφiφtφ

+ bΦcφiφtφ) + (di− d0
i )(b

Φ∪{φ̃}
cφiφtφ

− bΦcφiφtφ)
)
Ncφ ≤(

diCq + (d0
i − di)δ

)
Ncφ

(b) fciφt>tφ(φ,Φ ∪ {φ̃})− fciφt>tφ(φ,Φ). This component of the marginal potential function in (28) is

upper bounded by the formulation in 32,

n∑
c=1

T∑
t=tφ+1

(qΦ∪{φ,φ̃}
cφiφtφ

− qΦ∪{φ̃}
cφiφtφ

− qΦ∪{φ}
cφiφtφ

+ qΦ
cφiφtφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
ciφt

Nc ≤ (41)

n∑
c=1

T∑
t=tφ+1

 ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

Cqr
Φ
ciφt

Nc ≤ (42)

n∑
c=1

T∑
t=tφ+1

 ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

Cqd
0
iNc ≤ (T − 1)π∗(P )Cqd

0
i

n∑
c=1

Nc (43)
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Where the second to last inequality is due to the Cq-submodularity of the base probability function

q.

(c) fcφ,i6=iφ,tφ(φ,Φ∪{φ̃})− fcφ,i 6=iφ,tφ(φ,Φ). We provide an analysis for each item i separately. The case

where cφ̃ = cφ, iφ̃ = i and tφ̃ = tφ, this case is identical to case (Step.1a).(
rΦ∪{φ,φ̃}
cφitφ

bΦ∪{φ,φ̃}cφitφ
− rΦ∪{φ̃}

cφitφ
bΦ∪{φ̃}cφitφ

− rΦ∪{φ}
cφitφ

bΦ∪{φ}cφitφ
+ rΦ

cφitφ
bΦcφitφ

)
Ncφ ≤

(
diCq + (d0

i − di)δ
)
Ncφ

Otherwise, we note that rΦ∪{φ,φ̃}
cφitφ

= rΦ∪{φ}
cφitφ

= rΦ∪{φ̃}
cφitφ

= rΦ
cφitφ

. In addition, the trend component in

both purchase probabilities in the potential function ρ(φ,Φ∪{φ̃}) are equal. Same is true for ρ(φ,Φ).

Therefore, (
rΦ∪{φ,φ̃}
cφitφ

bΦ∪{φ,φ̃}cφitφ
− rΦ∪{φ̃}

cφitφ
bΦ∪{φ̃}cφitφ

− rΦ∪{φ}
cφitφ

bΦ∪{φ}cφitφ
+ rΦ

cφitφ
bΦcφitφ

)
Ncφ =(

rΦ∪{φ,φ̃}
cφitφ

(qΦ∪{φ,φ̃}
cφitφ

− qΦ∪{φ}
cφitφ

− qΦ∪{φ̃}
cφitφ

+ qΦ
cφitφ

)
)
Ncφ ≤ d

0
iCqNcφ

Where the last inequality is due to the Cq-submodularity of q.

(d) fc,i 6=iφ,t>tφ(φ,Φ∪{φ̃})−fc,i 6=iφ,t>tφ(φ,Φ). We provide an analysis for each item i separately. Similarly

to the argument in (Step.1b), this component of the marginal potential function in (28) is bounded

by the formulation in 33,

n∑
c=1

T∑
t=tφ+1

(qΦ∪{φ,φ̃}
cφitφ

− qΦ∪{φ̃}
cφitφ

− qΦ∪{φ}
cφitφ

+ qΦ
cφitφ

) ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

 rΦ
citNc ≤ (44)

n∑
c=1

T∑
t=tφ+1

 ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

Cqr
Φ
citNc ≤ (45)

n∑
c=1

T∑
t=tφ+1

 ∑
π∈Pt−tφ (cφ,c)

|π|−1∏
j=1

pπj ,πj+1

Cqd
0
iNc ≤ (T − 1)π∗(P )Cqd

0
i

n∑
c=1

Nc (46)

Where the second to last inequality is due to the Cq-submodularity of the base probability function

q.

(e) fshipping fees(φ,Φ∪{φ̃})−fshipping fees(φ,Φ). Out of the 4 cases that we considered in this part of the

proof of Theorem 4, case (Step.3(a)ii) is the only case in which we used the assumption in Theorem

4. This is the case in which ASΦ∪{φ}
il > 0 and ASΦ∪{φ}

il ≤ 0. Then,

fshipping fees(φ,Φ∪{φ̃})− fshipping fees(φ,Φ)≤−ASΦ∪{φ,φ̃}
il +ASΦ∪{φ̃}

il = ∑
c:`(c)=l

T∑
t=1

Nc

(
bΦ∪{φ̃}cit − bΦ∪{φ,φ̃}cit

) · sil ≤ δTsil ∑
c:`(c)=l

Nc

Summing up all the bounds for the different components of the marginal potential, we find the bound in

Theorem 3, (
diCq + (d0

i − di)δ
)
Ncφ + (T − 1)π∗(P )Cqd

0
i

n∑
c=1

Nc +
(
diCq + (d0

i − di)δ
)
Ncφ

+(m− 2)d0
iCqNcφ + (m− 1)(T − 1)π∗(P )Cqd

0
i

n∑
c=1

Nc + δT

NL∑
l=1

sil
∑

c:`(c)=l

Nc ≤

2d0
i δNcmax +md0

iCqNcmax +m(T − 1)π∗(P )Cqd
0
i

n∑
c=1

Nc + δT

NL∑
l=1

sil
∑

c:`(c)=l

Nc
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Step.2 We now analyze the general case in which |Y \X| ≤ L. Having Step.1, we assume that for any X,Y

such that X ⊂ Y and |Y \X|= 1.

f(Y ∪{x})− f(Y )≤C + f(X ∪{x})− f(X).

Let us denote by x1, ..., xj , the set of items in \X in an arbitrary order. Then, based on the results of

Step.1,

f(Y ∪{x})− f(Y )≤

f(Y \ {x1}∪ {x})− f(Y \ {x1}) +C ≤ ...≤ f(Y \ {x1, ...xj}∪ {x})− f(Y \ {x1, ..., xj}) + j ·C

≤LC + f(X ∪{x})− f(X).


