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1 I naddmucti on

The history of computing has been a t-20i'wenpthiamyt, or
c o mp thtaevres become pervasive, shaping thPewbmpgsand p
other tecdhhel eaglfdbme ryyeecaarr | mpr oye maanrnt s Tthecad e s o mi c
i mplications todnttihals, rficre eaxae&mpsludsit i s esti mated
the United States since 19B¥wr cameOf ir iedr) i3amadkri Smagt hietl

one of the |l argest cantributors to national pr ospe

Terise of computers is tdaulee t ®c i mathimatc afl i nsduhceceeds stels
economics of this prBrcesmsalwen earfd rdsth @ tdeimid 8 of g vegdl &b
ageneral pur pePéeEhtechbpnol egpegenyewnming neféahs gthh at

valaupep!l i ¢ani il onary, S pcaoarp, ¢ heptacn.u)f .a cBhwte,et s n y haovat
pr odeuwebeet t er perfor mawkhiesher ¢ owed mosé cocpstei s
Increedhesmarhde hnsfnucret her | anpd otvleeneayksd re comp thth@Pelsc hi p s,
cychatsel d foandethdesesul tande sicnepisbodMde onré a)'t sh alivaew tbesre r

transfor mati ve.

But , Buesnalkan and priegdtecbeGBTE 1892) he end of th
challenges. As progress slows, the possibility ari
nNi chearoebWeenogust sucht cadaabyr amwsiet iapmp | is@eai abhgedcoee mp
procewhbtch can dtomdreawkiptribdrealp et stpheorsfeorfrunManyns be
high ppepfikati aflglelaadwi ng 1 hicBeudlpr rlgelar Ndo mm ¢ f Ma c h
Learning) andlhBist cpoa pne hnyi ontirhrd ge.snets ih @ plpte nd mgws how we
moving from thecompdi €i oh autndiwagdresliatrigthdbaadssed benef i t

many andnrganppirddwy a model where different applicati



whetrltbeenefi ts are uneven. I n t he | onag stloemrwm,t hteh iosy efr

pace of computer | mpirnpesteanitceo nefmpar gr psperihis

With this background, we can nowilhe Decéi peeofs€o.
asGaner al TPauh moMeegiyonte an t hat computfeorr@iy@ewa 4 oa dwh sloen
cal culWed aneas wehatr e moving away from an a&sriamiwhaern a
computing platform, and thus where i mpr odviefnfeenrtesnti n

users are on different comput i nagr rpdvalfif iof erfst aaghmde Mmtaan

wi || mpant $ hatwicpodinopgurieishsf) eartent rates. This wil/ be
to bed astbvhane, i mprovements continueon® thkratr ampsé dl, o
get posoveve Bpomlthese | eading dsolnoawdnléa naeo chp atr ien @

i mprovement s.

Seci plriozeadnsdortshe significant speéedvpnthen. offFfben eaf
the early years of computing, many sufpencomptueet s
But the attractiveneshbsecafursi¢vheg rso zdgptsidonr ndainmdien i ismperc
exponent ieaslullyt., Ast abercame wunattractive to invest r

procebHEpsmapedus,nd2 winpibvdecredsashd rnsat ed tdate tmmaR@iOdDant il

Today, this trend has started to reverse itself
considerably. Whepredcab | ahi p mpe o e o ma2B0@0&4p,e ri ty ehaars b e
than 10% since 2008 (BLS, 2018genelrha lsc psdpapaa smagk ecs f
specialized processor st mme ;mma tpterr & otrgireden d lr eodnah ubseei nt gh ¢

ef f ipcriibev@ts advantage for | onger.

Not Dply formance sl mpr awne Meents aluspbscesnonver sal pr
prodJdaeres rapi dl y eSsecndlcaotnidnugct@ostmanuf acturing has
industry, but -motr ei sobe®©dmithhg &verchi pedigeudhicgurat
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beginning of the Millennitume mdde souar ¢ hirrevee shtamen tc e
edge (Smith, 2017) ( Dent , 2018) . Thi sbiilgdm' otb us U rdp rai
manufacturing plant (Semiconductor | ndustdreysiANsoci
and operationalize the priaductbioarm off d hreesve qareersdtti
for the first twine saidnocpe itome odc ccroompyut ers i n the 1

|l nself i xed cdostthseisrurvpaarsisaebl e cost s.

The worsening economics of chip manufacturing poseé

processor 2bpeecrafuosrematnihcee r ei nf geaienglteepconnpooisoeg iceysc | ael so

in the remersé& Higheticosts and technical <chall eng
growth will slow, which makes financing the next r
performance i mprovement, axdc erob aotne d, Tihfi asc iggmrgoucseksosw
uni ver sal cheswstchmptovemedti shugsefluchhps di mini sh

uni versalUschgpea theoretical mod el and empirical €
pushmmnrge and more applications to specialize and
i mprovements iPuwtunanvoetrhsearl wahyi,psas the i mprovements

sl ow, movement ntiac hfer d grodhmtod b gi es accel erate

The performance advantage that comes from moving t

significant breakthroughs. For exampl e, Deep Lear
specialized chips, daond gwlser eh atsh eb eleenn etfriatnss f ofr mat i
recognition (Russakovsky et al ., 2015) . Today, D e
categorizing images. Before movi nngoet¥ e ns p e miptalh i £ & © €
other image recognition algorithms whoé&e error rat



ot her major advpantcege ®oeckinfeipcgigeinaclyi.z efTdhi s not only
rformance of s@@ithti ilywnles deervilcretserwmidgthout 1 mmedi a

t also reddaokst & deen tpeorwe.r bi ||

sed on these advantages, transitioning to speci
ocessors, seemg & olnegiapall icchadiicoen.s Buhterfeo wi I | be
eclude the maowe etsd higefsecc iagplpilziebdehi ads Wot seget hée

ey behihdfon, the universmdr o rolcewlsy.r sSo,widd tbhlee

i ver sal chifpsaginse nreg pnlgacccbedstsb ¢ roa ceormeput er s will no
ra.l Il nusstee’rasd of compud ithigde miph atvt dnyeind e sl bablielic gbmoea tus
nging from highly accelerated to stagnating.

OQuargumeoicasedf odd otwison 2 reviews the historical t

ner al purpose technology. Secti bow3tt héhads mdretesy t |
celerated by DeexyplLaeiarte mgevn eFeaclt i pocny pdo avéhiatsh c hn o |
derpinned mpompfeacne ngo manyi sdecawleseversing itsel

mput iSegtion 5 outlines the consegsences of this



2 The Rise of Universal Computers

21 From Specialized to Universal Computers

In 1969, the Japanese -cdomp@gmyoBe sofc oimh ehiemdopredey ot 3
went t o -ftohuendreedwlsyemi conduct or schmimarha dwefcd csti wrne r ,1 nlt
build Busicom a specialized chip that could only |
procebhavrcould be used for any type of computing,

of a callMauloanteo,r Uh@®5)st anding why this choice was

‘N

perspective on early electronics and early univer s

Early electmuomnnives sewbreomptuters, but dedicated pi
televisions. Il nsi de, their specialized el ectronic:
type of chip that Busicom had ibre mipredivaH drr etdh e y ea:
the functions that the calcul at or needed to do, a
complexity is pranageatbi ghlaywde ft fhiecuised migp olwetrtk icBgt f @als

aproach also has a key drawback: it Il acks flexibil

I n contrastprtoocedumaavicqart shezlesilaoe ones that can perf
cal cul ations. dmdé s@aadanp udfercrheast iang omg hi story. As
attempted to buil damalmetcinkdaoli cligieed sabn¢comput ati on
vari eod Davnd., Budxl2Blabbage never succeeded, and it w

proved that computers could be universal

Early electY¥onkevencomhosd@n&elswiesgade di nt oprbheot i spetafl
algorithms and were difficult to adapt for others.

uni ver sal computer, it was primarily wused to c¢com



calcul ation ovmaputhneredwadyl ¢ hrawer ¢d thhe Mmapueaméyt r a
design. Thi s -i rmpd eimeenrhe mtartdovare desi gns for new fu
swi-oedr from vacuum t(Nogset & Homlieo HdPBdt)or s esol vir
was invented by John von Neumann in 1®@ptéd &Bacerdp wtn

architecture that coul d Gse porréetg hi@anrshtarrudcwtairoen sf oarn de atc

calculation. This made it possible to execute al gt
specialized maNadwaarn dmhdflsi tvecture has been so suc
of wvirtually al/l uni versal computers today.

The pioneering work on universal computers and t he
the 4004 mihartoprnotceds sbouri Itt f or Busicom in 1971. |t

universa) pndcebsoerthe first one that could be ad
software. Thus began a cycl é etdhaits has trhhev pleutviasn iv:

computers that we enjoy today.

22 The Virtuous Economic Cycle of a Gener al Pu

Many technologies, when they are introduced into
hel ps tdpe.m Harvley adoptwdi Kihbeasygncvtehset npernad wcot . mad ke t he
As the product i mproves, more consumers bugrit, wl
many prtonduscicsmdbe down-t -meidurheasrhprraduct | mprovement

di fficult or mar kets become saturated.

For gener al p uw lpedrdee rtee d tsn elnmgimosu s p ol emd U saeh ntf lbagy m
besefsutharry consusnmearsy aicrtdhess rvierst uousceabnaoamecfoycl
peri odsoofl onigmeas techhntFornl unbwet shael mMpus onda bebssseernst ,i atl

of a gener al Bu repsonsaeh atne c&h nTaglaggghye s b e sg .e x he 9t2lhye wha't



vVirtuous genergy gwwhHmoEiegihfteech nlod ot ed f or nbeacades

applications thheualngut i zlee.economy

Technology advances

More new

Finances innovation
users adopt

Figurel: The virtuous cycle of computers as a gengugbose technology

The extent to which the virtuous general purpose t
From its nascent state with the Intel 4004 proces:
to 2010, ftplkee srowmmb eRC=nopl udt egrrse W a hp earv éyweaagrg e f, 8Po. , 2

and there are now more ti&rR2dbmét ebhmi, PEBABHe tusgr
fuel edr eavteer i nvestments to improve chips. Over th
new fabricatiTdon sf aaisl| iptaiiedbye nomnenoest idinati @ epdscesso
i mproved about 40(0RhC0 d uttiumeed ,osf RlGotabgmEldt,7 I'oqre popul ar
of Meolaw (an i mportant technical trend that und

hardware performance doubl8i ng every two years at c

Not surprisingly, the effect of Jcoorngpeuntsionng aonnd tShtei re
conclude that computer hardware, softwamntageaedpciomir

annually towards U.S. eBynoej cOgbgrowtdathidmEtheeatthdte 2



1974, i nformation technology has been responsi bl e

growt h i n -ftahrem k. eSc.t oNo.n

23 When a Gener al Purpose Technol ogy Became Le.
Based on the compelling mrcloomgimés,s of miegltr abe paa py
processors became universal, they would never retu

This argument unfolds over the coming sécpiuopdsebl
t echnolforgayg memateds mgaeher al |l epseces and which i1l us:

rel evant for our discussion.

At the begi'Mndmtguroyf, telhec20 i c motors (another gen
enotg@h aut omate kitchen appliances, but were stildl
an integrated el e(cWersitcearln nkg teoce prsieck, @ 9%l g3 28 % of an
mont hl y(Chmhaome Ut gt he2006rrn requiring customers
appl itdhrec eHaBmeialcthonCompany invented a universal h ome

and peowearexitytaiorigal appliances (oriFgigBal advertise
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Figure2: Home Motor advertisemefits
One can imagine a world where wuniversal home mot o
Hami Beanh could have invested in improvements to
furthert hexpmardket , financing more i mprovements an
i mprovements worked out, the motor's umervfe@mmdnce
motors would become the standard embedded into mos
Butplaipance el edt rsitcaymounoirvserdsiadn, t hey specifalized.

single typeapoofwemyt vi nghatwe have a pahepdyfahs omhai
run on AAA battertesanochluehdécembiecras st hFbdihgauy ear e

3) 10
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Figure3: Power rating of different household appliances

So, what di fferentiatestthe mMmMbsbos® Whycdmdutcemp.l
uni versal whereas electric motors became speci ali]i

them is the rpadeldfarpémporomameeat over ti me.

Had t he ppeadfodd mandbdd hamevmosar s ai mpmag\v ed drespaiddl yni g
the powerheadayded afpdprbke a blcosdem,g whi Imor ef 6han a

a smal IWiftdaant hese type of i mpm gwhd meratelsd,s pleraidv esrosd ls |

of power f ul motors remained high and the power of
home motors became specialized rather than univer s
I n computing, in stark contpearotl dfaourmmiowmer smeolt oprsqg c €
i mproved exponentially. Thi®nmrde pretr ftolranta necvee n tfheer bte
to a specialized processor could be quickl-y eclipg
parti ¢ultdrel spieci ali zed processor was also costlie



succeeding sections, but first we provide more det

that are favoring their adoption.

3 Deep LeartnhiengRiasned of Specialized Pr
After a | ong quiescence, there has recently Dbeen
cel | p h o roetsh,i nigrst e(rlnoeTt) , andiDeemj sevprapmiawg. aBlres t s

mihgt be because of performance advantages that ari
justify this assertion,adcwxagr dandleyn gt hsepseec i vad ri & eidn u

advantage them hswsfifeind cabl gaohipavht mgyg bbhem

31 The Advantages of Specialized Processors

Al'l el se equal, if one had to choose between two

i magine not choosing the procegsor.thate pai ver ma l

course, all el se is not equal. Achieving the brea
t hat specialized processors can avoid. To under st e
todanstand the broad technical chall enges to runn
el ectrical engineering jargon around processor s,

anal ogies to carchminngfermaeal r iamg: psmwpomilcy i on scal e

Supehwin management is critical for keeping a man
i nput for example steel from China, have |l ong | ead
go i dlee iwhiwaits for inputs to arrive. The anal ogo
for a calculation. When coordinated well, the data
(i cacdBe® that it nesedediflambltethevheal cul ati on. Howev



near by, or an unexpected calculation is performed

away (the hard drive). The downhi iméd e da adt@me igaectte dn ewn |
data fr om, tphwmeo cheaspsdorrdmcirlvhei ons of <cal cul ations! Thi s
management is and why speciali zed npernmooaeys shoa nsd wi bdyt

specifically for one p(rHoebnlneens,s yc a8n Pyaitetledr sloanr,g e2 Oslp7e)e

A second challenge inugatro mamoadaceé umomng. i Shiscat om
existing |ine to make it run more quickIly or addir
avail able for processors. Processorsheahi metruog Mme

in processor speed) can be dissipatedvaesftfee artuicvhe Il ye.
poweeducing hea$pecioaluiczednchi ps can also be desig
in paraddmdl,e ftohroeugh the additionThiiamdspeednalp
calculation massively if the | arger promdsenm amab lbe

of running in parallel

With this modeli oof iproncesgsoitopsraansier to see why

hinder performance for special-ofzfed itms&lsvedoirneaxla

"r-eatate' (whiOnhk ius ev dlouahllhe)i.stp aocne owo uelxd rbae ptrhoec east
more calculations can be done in parallel. Another
to the processor. Which choice is better despends o

mu st be able to do manydadifgreremoi cead cad a@at madese W
cal cul ations, even i f t hat means t hat they are no
t hat upnrioveesrsssade dietshi glnoetds wof cache (to avoid those

the ha®Yandrhawe some, but ®not that much, paralleld.i

Because of these | imitationsasgéeeiral iazieslucphr diceat 3t sedrry

thanvarsal processor. These can be divided into c



greater amounts of parallelism, (ii) the computat:i
(catrlegdd prity f ew naerneo rnye eadtecde & rendl Y (eidv) cal cul ati or
with fewer signit{eHdannessygi &sHaf temresheiotiadbhls7,) spec
processors perform beftfterc dreclhaismade ftferteait! amr atdlee
Broadly speaking, the more this changes the desig
speci al isned ghecésso main ways that these gains mar

efficiency.
311 Perfor mance

The extent to which ppeocidalsibpgaticam beadeenhoi ohahege
central procie$iei @dg® mi migptm to(c@ePsesmwdr aalt ypi cal graphics

-t he -anmmmon type pafocemewiral i zed

Tablel: Technical specifications of a CPU compared to a 8PU

Calculations in Memory Access to Level 1
Processor Model Speed
parallell 6 Bandwidth Cache

Intel Xeon ES 2.63.5
2690v4 GHz 76.8 GB/s 5-12 clock cycles?
GPU NVIDA P100 3,584 1.1 GHz 732 GB/s 80 clock cycles

The GPU runs sl ower ,&afr aloeanaccgh tdglodcdk 0t thea GBUT
more calculations in parallel than the CPU. This
parallelism, but slower for those wiboh WwWotkleadarw

hi ghl Ipalriasm GPUs are (Bhreadpge&rormperetc allcuyl &2t0ildn

The memory systems are also designed differently,
(determining how much data can beacmewed ngt tchmde )d,at

6x as many clock cycles from the closest memory).

1



the data needed from memory can be anticipated anc

unpr ddiectomes.

Tabdsehows a compil ation, put together by NVIDIA, t
characteristics translate intoampe rsfueltldAdt eNoEai nes f

particularly, hdw fwicheh| Deewks Liedhir8omnime he we ' | | retu

Table2: Speedups of various applications through GPU implement&d%IDIA Corporation, 2017a)

GTCP Physics A development code for optimization of plasma physics
RTM Oil and Gas Reverse time migration (RTM) modeling is a critical 5x
component in the seismic processivorkflow of oil and gas
exploration
LAMMPS Molecular Classical molecular dynamics package 6X
Dynamics
MILC Physics Lattice Quantum Chromodynamics (LQCD) codes simulg 6X
how el ement al particles a
forced tgerpadicles ke pgotohsamd neutrons
VASP Quantum Package performing ahitio quantumamechanical molecula 10x
Chemistry dynamics (MD) simulations
HOOMD- Molecular Particle dynamics package is written from the ground up 14x
Blue Dynamics GPUs
Specfem 3D | Oil and Gas Simulates Seismic wave propagation 18x
LSMS Quantum Materials code for investigating the effects of temperaturg 25x
Chemistry magnetism
Amber Molecular Suite of programs to simulate molecular dynamics on 34x
Dynamics biomolecule
AlexNet with Deep Winning network of ImageNet competition 2012 combine >35x
Caffe Learning with a popular, GPtaccelerated Deep Learning framewor
developed at UC Berkeley

312 Energy Efficiency

Anot her important benefibheypwyfusepekcéeatsi pedeprooesso
This is particularly valuabl e for amglhiicnagtsi odnesv ilciel
and those that do computation at enor mouws .s cralres
example, our cell phones typically have a host of

phone connectivity, security, navigation, graphics



Energy efficiency is also a nmadj,ordactoascte ndtreirvse rmafdoer
US overall eneShgeghamin sandpd IDOA 216 mMaPEs Ithwer 31 se mag

cost by more than an order of magnitude for certai

Th s, both by providing significant speedups to am
chips can provide | arge, tangible economic benefit
32 The Disadvantages of Specialized Processors

The freedom that ispethaehdpedbbowpst hameto greatl
calculation. But once a particular designTabkl emanuf
lcan be used by many mor edpapprkiscoirnoerst hkanamést haj
is i mbnsional veXt orwhmuwlht ihpalsi cmanynapplications

Never tthhed ewsass,t majority of software cannot be run

The customizati oaml iode chaoghiwas ecdam m&lpeacibe a ?probl er
them idiosyncrFaotri ce xanmgBMti fSoincyuland Toshiba coll ab
specimrlocaedisacrh, in 2006 founds its first major app
Only three years |l ater, the I|line was di c686bokesped
20Q09)A similar fate awaited the company Clear Speed
chipshwlots of parallelism, but whicliWdbwoej z2008
Because many tasks mnsmedbi dlei phdngprsoaeesonusn, ocAppl e

who work to ensure the compatibility of Apps acr os

The extent to which programming difficulty dissuac
Because utsheedy taor er ender i mages on computer screen:
Nevertheless, the difficultly in programming them

hungry programmer-gr aupsheidc st hpeumr pfoosne sh mprohritsa nwa sb asrud he

1



adopti srpetphratgr ammi ng, lea.ng.uagc&DA,rehted b@Relhs i mp | i
progr a*hfigWdg.kfows the increase in number onfe apipl i c:

response, including examples from manufacturing, f

600
500 °
400

300

200 « °

Number of CUDA

accelerated applications

100 o ¢

0
2010 2012 2013 2015 2016 2017

Figure4: Number of applications implemented on a NVIDIA GPU using CBDA

Thusvyven tGPddbBahld many adyaznwekleswmd ubiquitously i
computers t(dteko nkrapkiasd r algr a masdt@agl)iheg ©or obaherer.

speciparld czeeslsaadr swer e not aass QPrflbsadés yehfvact awbel d be e

The disadvantages that we have aprnocettapreids sdbe ¥ alro
But perhaps t hoek poe cgigeelitczesdds @b dost sIni vetrhseal prc
fixed costs r(exlusra i @l leendyi mereri ng costs (NRE)) ar
processor s. In conspastal ithed mamr kee s ssarzse ifsorvery
manufacture a speci atidged teprchanos gy 1*@ ®nrmadfoluz a 68)0g
wor kl oads that can be significantl y ancecrealte roantse do f

technol ogy still provides a performance benefit o



aboutmi $¥@LapedusSec2Di.ldbd ngowedeeni |l about how high

i nfl uencoeef ft hbeettweaedre buying a universal or a specia

Despihe advant ages of speci 8l,ilztehde cdh ispasd vaarnttiacguel sa twee

that there was little adoption (exdcdiedpthwdagspreir@P Bg ) ais
where the ipeprrfoovveareemmcteor di nately valuable, includi
cryptocurrency mining. Recent years have overturne
transformative technique, Deep Learning

33 How Specialized Hardware is driving Deep Le
In 2012, the machine |l earning community was rockec

i mage recognihtei dmagemMNtee stLar ge Scal elinva gsaufdghth i Re cogn

contest, competing programs anallyazbeelere degtad d® fii nsahg e s
& owb odyc éhéaltibf)lroawmdeirt i onal 'y, the winning programs i nc¢
Machineosr( §VBher Vector s. I n 26010 &s s tefrircobress bomo f2 5t. hBe

t he ciomateesst

Al exNet was remarkabl e because it shattered the pe¢
(RussakovskaynaHts@alause20i15won with a different al go

i s the motdieornn oifn ctahrenaneur al net wo(rkoss e rhalt a tbtu,i glh%asa )

more | ayers of neurons ahhleus at honset wasgpemhéhedny 880
to -mMPd0s, but thewmse ndwarestthd adaeldd bkleadtainen svofr kr wa r e
the capabilities(6bfc.o@pldeB¢Nest odharhgeged itntrei s becaus

speci al i z(ekr ipzhoecvessks¥o reBty dle.v,er2algli2n)g t he excell ent n
parallelism and big amegoriyt hmidc Deapallealrinsmg'a va:

trained in the same amo@®@nwi pof ti me, which | ed to A



Further optimizations have taken the progress of |

can be trainddap&PUsebdamdwwwit h a uniN¥IrBlaA Q@ocrog@rsatc

20F%6) The effect has been transformative. Since Al e
used Deep Learning, and every o(nSz eofett haols.e, h2a0sl 7b)e €
In the years since Deep Learning on specialized ct
the superior algorithm for many natur al | anguage

recoghiHitmtommn etndalma,c ha W3 trakesV art( iJaetra nalet, &Pali4dn2 01
the increase in available computing performance we

| anguage proceswadrngd tahpgpilsiycsacmtbberge &1 Manni ng, 2015)

Deep Learning using specialized chips gained rapi
voice systems( Marr GoaA@p RiLkkovige, 20n&EE AN Sta oman@015)
machine transl ati on s y(sSkeymse asnu@cOhG dapsg | &K ytipreavndsklwgnt se? @ 1
are al/l based on such systems. Facebook uses Deep

speantto customi ze advéMal@e®ments to the users

The power of specialized hardware is demonstrated
Absent faster hardwar e, Deep Learning would stil!]
(Goodfell ow. eltnsatlead,20ilt6)has proven to kReotisansf
applications that we use every day.

34 How Deep Learning |Is Driving Hardware Speci

Deep Learning's success created anpremnos.anoBiirsl |a phpaeltl
Chief Sci enptriosducwirt hNVGMUeA ,ofc atlhleedbiigt kil l er appli
t od@yal safi. eNVEDI A @8&8t1d¢enter revenue habarghore t h

about 50% of those sales(annék, a201ti buted to Deerg



In 2013, Google I ooked at anticipated demand and p
a day, Google's Deep bheéaudmighlpd atedcamu@EMédyz r e21@1 7T
I nstead of buildinggmbppedndaetnsaht precesserven us
devedmpewamr specialized processor, called the Te
procesame knownSpecAppki tategnated Circuits (ASICs
a varsebhyt afti abhs ks b &beoommgdfessPng hhuiltd (oTnARW) handl e

net wor ks.

Creating a customized processor was vearoysteamst lof f o
millions of dol | ar s. An di tyheety, ctl mé mb ¢ rnaafei togsh evine rvep s
equivalent to Gel(admwuyedr sffdofth| Mg at2éOtllvyg avoi ded i nfr
it worth it. So much so tiganeriani 20l R WYho b g liemerse la

| eadidgge (GPLUsmeatsauw eldorbgy it t-akabetorahdl at aohamgde

Google is not the only one investing heavhdok i n D
coll aborating with Int el on their Neur al Net wor k
computationally expensive taskdmanaefpbabeemsdr atdc

dedi cate part iofed hsepahcieghdrny mohislte achi ps to Deep |

Appd ei Phone Xs aMai &Hiuinaveeh 7 ,

Stampts are also getting into the action. Estimates
chips for ar{(fifARcHal dwad,el G BR)h2@E6, venture capit

$1MmM3 | inohhese type ioniesc oansp amuicehs ,a(stMli rheeé mtr @ivli eau,s /@&

35 The State of Specialized Processors Today

Computing platforms are changiPCg. towardsesdwmeabryei s

datacenters. In 2017, five tPmEéaraséiangOosimpal pholb

2



and a major semiconducperfoamahgetoodpuethpect & alsit
segmefel dmann,ThelrleB ai)s al so a broad consensus that
source of future growth. In al l of these computin

procesame domi nant or growing.

Mobi | earceb iespab ¢ it e ms 6tohnata icnhtiepgr at e mul ti pl e process
for a combination of a universal processors and
constrained by battery leiefne,s pneucciha loifz ead stroa rptrpohvoi ndee
(Shao etThils ,h291@gnogr estedurniov etrhseadp opillredts evelisdoraen, 2 0
of arheea of anhitPik@eokestheppraicaddsoicrag esdpaco speci al i :
as a graphics processor, motion coprocessor and, f
analysis that we conducted about the tgenkat acthe

percentage of the chip that®is universal is holdir

|l oT devices are probably even more sensitiwve to p
user hardware, sucthags fthe ndeatisochmlskadioREICReCchal i :

et al (EagOw@dpd, 2017)

As we already 3r.edptordreed iisn a escitgmoinf i cant rise in th
and ot heerr sdat ac|lcoéundt sp rhoavsi daelrsso. happened in supercon

same trends as data centemsdbtthubas sbhbeasererptulbl aae

Unt i | 201m0d f woln | oyfs at Ged wmedtd suPgecoampurédospr 80€s s o
201Bi)ghusrheows t he percentage of supercomputers addec
most power feualc hc oynepaurt etrhsa)t wer e equi pped with speci
what i s also cl| eahlri ghnl yt hset aftiigsutriec,altlhyersea gind fa cant

year in the share d!s.i nign slpiece aWiizedt pir®casabysi s,



performance added by speciali zedddedodckeys swrisv ewrassalgr

(Feldmann, 2018b).
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Figure5: Share of supercomputers added to the Top 500 list using specialized chips

We al so perfoamattysai segfesiswomncreasingutsegofi ssp
changineggy efficiency. We find that, over ti me,
i mproving the number of calculations that they <ca

only use univer stahli sprroecseuslstoriss, hafgdh ltyhastt ati sticall

of all of the computing platfor ms, PCs remain the

greater variety of tasks and power concerwsatave |

case, they are the base case that we consider throc
farther along in the move to specialization.

Wi th al/l of the major computing platfwamdsdomemat i
becomes i mportant to ask what effect phoszsvsWd hay



argue in the next section that it will wundermine i

advancement .

4 The Fmagme on of a Gener al Pur pose T

The virtuous cycle that underpins gener al pur pose
techni cal and economic forces. Unfortunately, this
if i mpr osvieomee ndrse pargo owWwmptihoev ecnyecrptaes, tisn odWeh der@a | ¢ y ¢ lhé ¢

| att e rcaygcnheen thi encga secsyece ewii h h s s h b w, fproa gamigeai tegle ntea al put

tecbgy,! | eaving ed aseetd dfe clhmomd enlgyy es advancing at di

Thferagmegtieghas three parts:

I Fewer new users adopt
T Finamoinmgiast ihoanr d e r

f Technology advances sl ow



Fi gbghowsy t hese partscheaelbh@giee vamd ubaw greaer al purp

identified by Bresnahamwnathah af ragreaypmmdaetr igsbhyolwon9 2 )n,

(a) (b)

Technology advances

Technology advances slow

/

More new Financing Fewer new
users adopt innovation is harder users adopt

— .

Finances innovation

Figure6: The historical virtuous cyclef universal processers (a) is turning into a fragmentation cycle (b)

I n addition to these parts of the f r aagungenmetoattiinogn c
weakemarntgs of the cycliet. iAss omea ndgeessc riirb et theeseowe xt er

computing from a viimbgueus cycle to a fragment

41 Fewer New Users Adopt

The reduction in the number of new adopters for 1
demand fr omhteh awgpérvoesessieedo ¥ 8 ment of user grawgtsdr om

specialized ones.

Sl owing demand from those usingbéebausa, ves swk WEeL
secdi @n2here has becfnf ainn emeorrfrnoorumsa nfcael |lpmpcegsment

Under suchwec onnoduiltdi oenxspect customers to replace the



I nt el CEO Krzaskabthhhwsd ngonfhiatmache replacemsent r at
t o eveg/reya(rkBr zani ch Sod@tlibnes, customers even skip m
i mprovement befor(®aitt oinsT ReDsIttr)amgp dmdminfgest s i tself
In 2014, Uu. S. consumers were upgrading every 23 n

mont{fMartin & Fitzgerald, 2018)

The movement of users pPromersmeveersalralt ot epear alair
fragmentation of computind,s and elanyc Sehostesnade csi caul sisz €
processors are gaining mar ket share, revealing tha
has been a noteworthynsastoan rd blussoemasnyftddmabrp hase
why there has been a movement of wusemsedeut tdfe wrhiov

that consumers make between specialized and univer

411 Modleilafg proceskdruidh mince

A onsumer choosing between a uimvuersdécipdecebsoh w
the best pefl 6t we snBingBssheotwistslee naf i pswcpesdbor mance co
evo,] veeach showing a vartited zen mbjftddawo plk e jt hmaha & menteesr
from specializati on, and the rate ,ofoviempreaweeme nt

eclstphsee gains frommplhratt Ipies f foir gnaiyiese aveo s usne tt hat
pricespefci ali zedxphbkbpascsed osdfabgethes cobitvenps alvi
proceBlioy smeans that bot lmandurnvas arnes ngoes tipoad piewd log
al so tmptiaesupasi orpepre Fpgraafilainec.ei s al so why we depi

processor as having constant performance over thi s
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Figure7: Optimal processor choiaiEpends on the performance speguthat the specialized processor provides, as well as the rate
of improvement of the universal technology. B&g performance jump frorapecialiation, (b) Smallperformancéump from

specialiation (c) Slowerimprovemenin the universal processor
| Fi gidrea specialized processor is more attractive
is | arger than T haas pslpueec isah aiidzmend eperad coatsaspadred vadr djiefs
i nigadian i n paesrdioomanan(ca) ,t biatt i gr avied egai toladdeca U 0 gteln e
uni ver sal processor ag piammp rng wi)nngt rnacsrte, sulnanwlew,s a | [
attrwhbeéemevier rate of i mprovement quickly eclipses a

panel (b)

412 ModleilRhgoces s oirfFo@hmailc eMo d e |



Consider two tuppee®r epbelcpica bidizsdsdne sf o #mmandmgr ist e
“an“d. TPpleefomwmmanbhe specialized procpersidona si snelaingh e h
forptihbkéeone specialized processor, a user can inst

(with stthégefpieod or mancelOpei agd deaoh edniaser s al proce
yeadMhich choice is better dependsheomnnubbk pel &b

i mprovement r at es ©%r (Whhiec hu nwev etryspail d aplirfipyc &r e)p r &rsce nhto w
l ong the specialized processqui nalednst ttoo behaseequ

proce§ysors (

| f we model chip °%U(ptdoatawnai daan dcnoanct éi snsidorgyst f u | compl

di scr et itzhaetn osnp)eci al i zetdh e hti ipmme airret @pgredler ofe dp avinfeamr r

chip is greater than that of the universal chip, i
0QO0 0/Q QO (1)

Solving for f®heaingiegr gli ednd:re

2o 7 Q 0
v L T (2)
0 P Q p
57 T~y I 3
0 p Y i l (3)
0 Q p
S 4
0 h “Yi (4)



Wek e i nt ercewtipofdf nit n Wiebsepeaen al i zed andarueniprreafserlr epd,0
is when equation (4) hol ds at equality (also sub

i mpr oveemeonft trhaet gener al: purpose processor,

v Q p

C4
5

M _ (5)

Whetieshe number of years that the specialized chip

of uni vser $Hbesqcuhailpet onumber of hathi eans bk pame bacsxetd, f

—mul tiplied by how many yelafr swe axz$s wme pvreiqasenll c aorh i pe
reritftedm @, wheset hewimas ktulpe v ar i@aibd et tewswsi tansh
fixed costs. MMNesddiromerntasswuimews we ,ddmadudthed vwairtil

codt,, of specialized an® .uninwdrysdlsb aadfd plsrutgayledsdtshoeat
variable and fixed cost contributions for wunivers
4.P,2s0 we assume this as well. Finally, for the f
the totalYOof i xeld videtd, by the numberd dPf Fpgeihéi ze¢

assumptions yield

S - T S | S 4 B: IS £ B
— Y e YT o < P (6)

Thusin Equa(t6Nenayv ¢ 5derainvded a e icmptloef ff ubnectt Weotnn d cobriy pt

requires information on the performanceée hgainmmbeom
h

specialized chi ps ,t haatd nvaidlelr o readden dt eleeedan(i wr)ocessor
Thequaddesn not have a si mpwied datniarhayttd ciath rswrbeurt iododnlolw

section



413 | mpl i cat ifornassg meonft ittringe gener al purpose technol og

In the analysis abiogvlegrxed wast £ | efeerccapitract a lthheee d t ¢ ke
amor oiveeda | onger period than t.DPartppgpi thkesewbenbti
to which the specializeddepteépwsetolmt het perfohmiaoeef
chi ps ovearntda k endecrpebfiettiise ornat e of progr @eésBiioraunbpbVelLl:e
Statistics (BL&B%e st oIn@@400 OTthhiest ciass et when univers
i mprovement wasratehtanyuemph evkeiment canei danr@®Il ywe C

in DBOQ4 8%d OB BLS, . 2018)

lis appr oX9 MOt sl mpdPs @ xmimaltledye $BH, @A G1L 7alp)pr oxi mat e
(Krzani.chSulRdDtliét)ut i ngb)t hael sleo wsn tuos Hagou gtlioan t(he vol un

fremeci a(Fi g@®t.eon
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Figure8: Optimal processor chte depends on performance ratios and volume

As we can see, bsoptehe dsutpr oanngdl yv oil nupmraec t cwhhigptsh eat spact ia

At t hef pMakbLwiwend 8 %, sipe cihanweiglz€eOdx f ast erontels&n euni ver



prif@a huge Yi them8padla& dhadsap r~o duhcee d nfveerst ment in a spe
to paMhidfef t hat vol ume sofragcphliipacsatlifisowaose, & ldi badbhibe @t 0
such leadrufpesosnp s p e.c s ¢ eéfdaacptiomios e rasal was ifedhrsrge v e d

opplithat obferncen i GoecliPRat o et. aHor, a2 Oslp7ele dludh 0O 10 x,
chiapse needed tad iamatkrea cstpievcei.alAitz t he ot her extr eme,
2X, it wolu D6t mikps makeatsiper r dbieseesul t s make it cl e
the heydasy Llodw,Mowhreen uni versal processors were i mp

to have bedrmohwsmhrdsspécichl pgeddecht psacti ve

As svawFigdgrespeciali zemdrehapsr et omempiefoovuei e osval.
Thus, woeurr epprecactecsad ccru lcaltdigmep b W thte U snpmrgove rReNlt3.r at e
For appwiitchatl Cabps, stpeednumber of p8dceBB®OG, nfeerd etdh «
with 1@xp dpgedttm?p,s080/000md, and f or -utph oiste ddriotplis0 2fXr Cbép e
t 8 100th.ufsor MmMhaoay wBweopl ath)i ons it wildl now be econo
procéedasoteast i n Aneotnihse ro fwahya rodfwasreee.i ngt hén iZ@@4 t o

period, ani tatppdi mat Be®h t&o cswwdul~d8 have required t

provide aupdoOtlx e ¢v@dr@8IWhiprobwasbd only need a 2Xx

Thus far, t hi st heatrgedvseolfogapsl ei g mormreuch on al fs peerca al i

assumedse velrogmehipecodt Mfef ool el 000 | i ne program r
mi | i inoM i xteod scpoesctisal i ze, whereas a | ar ge50 Gnpldioognr a m |
t o-wr € tacdb Alitsmi | | icordel i(MMevooramfk, 2013), assuming such

poss“%Fiilggdsreows t he effects that sucledddiftoiromnaloosad

specializ%d processor



1,000,000
900,000
800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000

0

Chip Volume

1.0 1.6 2.5 4 6 10 16 25 40 63 100
Speedup from Specialization
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Figure9: Added friction due to codedevelopment cost

Noticteceuhatfs ribmpeubatnahy| adehvge Icoopsme roifi ticsd deeh ifrlvdi tc s

movenmenteit heTrusd,dbdeaetvied map medrktersa kedmoriaga | i kely for t
switch to specialized processors to stick with the
The move to specialized processors undermbnestthe

di mini shes the number of new users adewiitbobheuwmsi ver
so thatprecepesidior mance were to speed up again, it

i mprovement to nfe®ve those users back.

42 Financing I nnovation is Harder

421 External f orces

The fixed cost of chipSmanudmdeatr @omgl nduessttioymad $ess0 C
that the cost tioc dtuiid @oéddimali letighuginpm eax tfi aolnr t echnol ogy

bil.l i Bywg@eea&tati on here, we mean the next miniaturi



the next process 'node'). I't mug ht loif s t mienihatr Wwiaz &t

since the 1960s (Leiserson et al., forthcoming).

The cost < hiimpv amtnaud aicmuuwsrti rbge fj arcgtviaftivesds W yh Betth ahpesy pr
as Mmuas*o3toHen dyis$3 418i | amomavenue omGld)ethge uBthti pg
whil e r evenueasosatrger oswi bnsgt. a nltn dtli hvee pyaesatr st, wetnhtey i nv e s
| eagdidmg(@sabhbivglPres ¢ 1perl yelhpdoadgesyxe !l op marctr eac ets
ithe hi s dautritrhaetre accel er A3 ®er c(@esar maa L @@ aéae0s1bdd ro

Santhanam)t al., 2015
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Figurel0: Leadingedge fab costs over time

Hi st o,thiec almpy iscuacthiagan sl ofnccease onnumhi xedosts was on
strong overall semiconductor -2n0a%6ksd tA, J 2Oty c h CAGR O
semi conductor manufacturenert o9d lmeretse mai hdredo€osh

bet ween fixed costs rising 13% annually and the me:



|l escempetitive players |l eaving the mar ket aed remai

number of chips.

AsFi glisdhows, there has indeed been enormous consol
companies pr-edgeiohi pgsadFngm 2002/ 2003 itoworRddct @101
manufactur er s-edwgiet hf aab Ilheaasdi ngl | lemt eflr,omTaZzZ5vano Spms
Manufacturing Company ( TSMC)® )ASa msQlnogbraih ére u IGé o bt

announced that they woul dt nnootd ep u(rBeunet ,d e2v0ell 80)p.ment

= = |\l [\] w
S (@4 jan] at [a=]

t

Number of manufacturers with
leading-edge production capabilities

130nm  90nm  65nm  45/40nm 32/28nm 22/20nm 16/14nm
2002-03 2004-06 2006-08 2008-10 2010-12 2012-14 2014-17

)

Figure11l Number of manufacturers with leadiedge production capabilities by node size and (@maith, 2017)

We find itthesycphaobbWhehenwos s edf u mgadpescdonngo niiicxse d «
anadnly mmdek agreowthle. ext emiar ket wi ioiorsporl| bi kdeastei oenc o n 0 mi

can bthseeglckdbheenvbel ope thl tbhkamboket were evenly

di fferent companies, it woul d im19—|—§i na 2g0r0o2w t2h0 0i3n t aov

(—)p i n-2@Q084 Expressed as a ,c otnnpiosu nwde mab ndre ubdgelh dgidr%eewtotu

for anr eamemaigped acturer t o Toheetr cioame marsk ety s<hasrtes . gr



consolidation waéeswbhbfiseiné mig t ano apbrfrascetsi.c aafls a shoeu rnsaer
from evenly divided because of Intel's dominant st
small er players to control fixed cost growth this

base anyway, and sol woadmpeédtavei vemai ned high

However, consolidati onmnaddan fomey pprogceecetd ffoorrwasrad |cour
2062 o 24@Epending on mar kedgagr ®evmihc o rad lest)orl eraan mmfga ¢
abl e to supppoorlti sat snianngudesfreittaurrde oc,cbsatindiid! @ nfeow feaaccihl i t
nodewisli zebe equal to(pgea&r leydin®iWwe froayk ed evhainsh epso i nt

t halt atien thd 30 swi | | be dgeley rtecml drt gy e chauti@ ophrieicmi w e na nd r t
wi tdnihy 21a0b oyudmamsuf acturers wi |l | be forced to dr ama
technol ogy nodes and find other ways $® contnioVecs

processors.

422 Current state of semiconductor manufacturing e

As rising fixed costs worsen the overall economi C:
the effect this is havindyon hlentmalsosrpetwe raifec ddndtreels
sellingdbgeag¢girmg e slsnotresl. dpned @20l St 40% of their nel
fabricati(asmebfaaorbedt ibgs property, pl andnR&DdlI netgedi p mi

Coporati.on, 2017)

Figlu2élustrafed i xew Icmotseéls have risen i(mRscompsui €d
by cost o.f We ouse swdrdi)abl e costs, trtathkbecahsae reve
to evaluate our concern about ri sing fixed costs

example those tthmar lkceotul domaemster d¥ioomn menti oned abo
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Figurel2 | dixeddosbte variable cost ratio over time
Over the past decade, Intel's fixed costs have ri
particularly striking because in recentzgearwhiahe

woul d be dxprdaedaaeced atce at which they would need to

423 I mplications for the benefits of advancing chi

Faced with rising fixed costs and sl oiwi anlggl noafr kwehti cgt

hurt the -ppeehofl b@amampece®vi ded by wuniversal chips.

One option for dealing with rising costs would be
as one key component to mai2n0tila8)n. hA gshe cpornodf iotp tniaorng if

fixed costs would be to amortize them over more ¢

processors with smaller node sizes. IntlkadcedemBet o
cycle of providing a smaller nodeeasrn zeyclpg oczrdsiha
announced that they wild.| continue pursuing this



Consistent wit hlitrhg swiatptp rroiasxcihnd ofri xdeeda costs, when

extended the depreciable |ifdWMhgtkei alequizpmént f

| Fi gtBe we conilsmtdelr' shofwi xed <costs might have riseil
introducingigmal Iperoceresd®r s. The red bars represen
that Intel would have incurredcaclad Ftolre y xiamipd @edudc¢ éd

bilodmoR&D and CAPEX per vyyaar wheanl ¢ hetyhevertto omalac
l1.ysear cycle we w'gouidemqu(i,tpitly)ﬂ)diarrrﬁ‘.ybeM&f ats e$40 5 year

baseline because it was the fastegini 1998,daardd @10 O
t hus matkgesarye@aompari sons easiest. This normalizati

costs ifdihiss medntblacck .adde
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Figure13: Effect of Intel prolonging the time until the introduction of the next generation of processors on the fixed costi¢o variab
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I n theory, I ntel's adoption-node asisdedvepr d md g odrus td
decreasde rate of universal processor i mprovement,
provide equivalent benefit. This thag pmetci sep yo whad



datmasa we shBbuv kekowi flondgemwegaepd enuenwe ®@nd uctn wde of n
size processors might | ead consumers to replace th

goal

43 Technol ogme ARllyvaaw c e

To measure the rate of i mpr ove mamdewlaspedt sc oonrfp emei ttriivee
are i mpometiantoverall ppef bommaalklera itthhei so tsheeat iiosn, w
i mprovement in both has sl owed dramatically.

431 External forces

As already hinted atousnl yt hiemploarstta nste cstoiuornc,e aonf epneorr!

been the miniaturization of tr @&nsliasw, orps .o blarbd eye d ,h et

description of the i mprovements ciompd @ns@uade)rsc u(ss ee
Whil e miniaturization continues today, the benefit
because of technical chall enges. Manufacturers ar e
designg Sdlafn & oLel aAdd 2B&s¢ | imits takKel @ewenr emo rad
2017)This external force of slowing i mprovements of
i mportant external cause of the swimemtifm@mome.gene
The scale of this change can be seen, for exampl e,

is designed to test performance of compHtaeanesgygter

anatPkP gr20dmow ¥y htahi, s bme a s2u0r0e5, uonvievre rlsS9a8l5 comput er pe

52% per year. Put another way, the compounding eff
uni ver sal processors improved 10x. rArooruntdo 2000&t 2
pr ocedadrgained enor-meums! yr énomcal ledhgDennard sca



transistors were miniaturi zetRunno mgutperoxecsswlrd bea
wi despread gainsa,bla&nd onao ulnondem beaisiner caused wi de
(Thompson, 2017). After 2005, the rate of perf orn

doubling the time neded for a 10x i mprovement.

A secododowsnl 6w t heofi nupnriovveernseanlt pr oces 20125 , i dsse Mpea te
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Figurel7: Schematic representation of adoption of specialized processors
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1n reality, Moor e 6 s L aivalthbughsa croail oge. See (Bersersomet al.,gogthcdaming) for t hi s
a nore complete discussion.

2 Qver the longeterm this may also become important for specialized chips, as will become clear later in the paper.

S5I'n this work, the term Acomputero describes both, univ
4 Chips, or processorgiill be used largely interchangeably for this work. In practice, one chip often houses multiple
processors. A universal chip houses only universal processors, while a specialized chip might host a combination of
universal and specialized processors. Pgmaresare the technology within each computer which responds to and executes

the basic instructions. Since chip/processor improvement is what makes computers better, for the remainder of this paper,
those will be the unit of analysis.

5 This financing coulde direct (using retained earnings for investment) or indirect (ability to raise external financing
because of expectations of future earnings performance). For the purpose of this paper, this distinction is not important.

6 Estimated by combined micromessor sales of desktop and laptop computers. For this period, laptops were the major
driver of growth (CAGR 26%).

7 Calculated as 2068017 R&D and additions to PPE spending

8 This is not exactly accurate but suffices for the purpose of this pap€ki&me, 1995for a moretechnical discussion.

9 Advertisements retrieved frofiarrington, 2017and (Period Paper, 2018)

10 Interestingly, today, we see some crosage of the most powerful household onst in the form of various

attachments to food processors (mixing, blending, grinding).

1 The space is valuable because the smaller the processor, the more can be made on a single semiconductor wafer and
thus the lower the manufacturing cost. (Flamm, 2017

2 Technical note: This is because the cache will speculatively bring additional data from the hard drive ahead of time, in

the hope that it will be useful later. The larger the cache, the less often the processor searches for the data & cadht, doe
find it (a cache O6missdé), and needs t(Rattegson &Henneasy,RU14 her (i
B Technical note: This parallelism exists at multiple levels: vector units, pipelining, multicore, etc.

In our analogy: Palielism is when parts of the car can be assembled independently. For example, the seats and the
chassis can be produced at the same time, in different locations, and combined later. Regularity occurs with repetitive
tasks, for example as done by robotskiray on an assembly line. The robot fastens the screws in the same way, in the

same amount of time, for every object passing by. Locality suggests that multiple process steps can be done one after
another on the same piece. For example, in rapid succesbiots could punch holes in steel, fasten screws in those

holes, and apply a covering. There is significant locality if it is efficient to do operations at the same stop of tee convey

belt. Less precision might manifest in cutting the fabric forcarsea whi ch can safely be 6o0f
(whereas mechanical gear tolerances might be much smaller). This lower need for precision could mean, for example,
that less sophisticated manufacturing equipment is needed to achieve equivalent pesformanc

“Data from Intel and NVI DI A d(slikegGies,B04®t s, O6Access to L1
18 Approximated by number ofiteads for CPU and number of CUDA cores for GPU.



7 This is not the specific value for the Intel XeonZ®0v4 but approximated with data from similar CPUs
18 Research Scientists from Intel (the largest producer of CPUs) contest the magnitude of thesarmerfoenefits,
highlighting how these comparisons often do not sufficiently optimize the software to get the most out of the CPU
hardware(Lee et al., 2010However, optimizing software to this extent is rare for applications, and even with it, they
still find a significant (2.5x) throughput advantage of the GPU.
19 Comparing performance equivalence of applisation server accelerated with 2x NVIDIA P100 (12GB) GPUs to
CPU Dual Xeon E®690 v4 server
20 The latest generation GPUs now also allow for matrix multiplication
21 programming refers to running any problem on a specialized processor. Due to differfacemtian the universal
processors, most commercially available software will not run on a specialized processor, but needs to be developed
explicitly.
22NVIDIA created the CUDA programming language and the Khronos group created trebopesmlanguag@penCL.
Z2Data from NVIDIAds publicati o287 iGPU accelerated appli
24 This true for the 16/14nm node siddthography mask cost are by far the biggest cost component of the NRE
(Khazraee et al., 201 7urther costs include labor and design tools, as well as IP Licensing cost.
25 Correct classification in the contest means that one divihabels assigned the highest probability tg algorithm
is correct.
26 Additionally, AlexNet implemented the algorithm more efficiently, which also played an important role
2" The latest NVIDIA GPU (Volta) also has a 30x higher throughput on infe(@\4®IA Corporation, 2017b)
28 While the firstgeneration could only execute neural networks, the second generation alseupdesiding. Many of
Googlebs speedup numbers for the TPU are contested by N
generation of a GPU, rather than théting-edge version.
29 Approximated by microprocessor sales
30 The regression estimates @i @& QL QiTi dOfa QB € QQE Qi OWERE ¢ T ¢ X andf

T@rmu .
31 The regression estimates f6@ 1 €0 Q¢ 6 1 X i QO QBINGE QT ¢ TTp pw'Q dwerel
™t & and 8t ¢ ¢°° . Interestingly, some of these supercomputers are equipped with specialized chips from
Intel. Traditionaly known for producing universal processors, Intel now offers an increasing number of specialized
processors. For their datacenter segment, they project specialized hardware to grow at a 30% CAGR and become a major
contributor to its datacenter sa(@¢amm, 2017)
32\We based our regression on data from the Top 500 list. This list is released tvieerayand r anks t he wor
supercomputers. For each supercomputer, they report esffigigncy (in MFlops/Watt) and whether they use
specialized processors. For the change in power usage over time we considered only computers that werednewly adde
to the list in that year. We estimate regression coefficients fargé Qi QUDBQ QO QQE 652

i NQOQHA QDR i £12 OQDICTP Pl Z ®QAXICTPP I N QAOQHAE "QW@Y i £ and
findatf o T& X*), T P C&BA)T p W Y™), T X op ™).
33 Theoretically, every application can be either run on specialized or universal hardware. In practice, some compute
intensive problems would have sudmg runtimes on universal hardware that they would either be implemented on
specialized hardware, or not at all.
34While we have in mind a measure of performance based on computational power/speed, this model is actually more
general and could refer teher characteristics (e.gnergy efficiency
35 For the sake of simplicity, we have for now abstracted away fnendlistinction between fixed and variable costs.
Equation 6) goes into more detail about the cost components, but it is important to understand that this price is implicitly
theaverageprice / cost and thus includes a fixed cost share.
36 We model this aa yearly improvement rate (rather than per technology node) to abstract away from how often new
technology nodes are introduced, and how big their performance gains are.
37 In practice manufacturers do not update continuously, but in large steps wheel#asg new designs. Users,
however, may experience these jumps more continuously since they tend to constantly refresh some fraction of their
computers. The continuous form is also more mathematically tractable.
38n practice they are probably similar,tlmot identical. The variable cost depends on the space each chip takes up on
the silicon wafer and the batch size. Specialized chips are generally produced in smaller volumes, which lowers their
yield and throughput, but also tend to be smaller.
3% 1n our model, we assume that prices are consfanaccommodate this, we use the performamaalollar increase
rate, rather than a pure performance measure.



OFl amm (2017) estimates that I ntel sold ~wdefbiionocessor :
yielding a per unit variable cost of $50 per processor

41 The speedup for some Deep Learning applications was significantly higher, but since the greater variety of accelerated
applications certainly helped to amortize the cost, an aveedige of 10 seems reasonable.

42 Assuming 5 lines of code per hour (which is already the upper limit, especially for complex programs (Mahal, 2014)),
an average annual salary of $75,000 (Glassdoor, 2018) (plus 30% in taxes and benefits), while wdarkiogré fer

year (US employee average per OECD).

43n fact, this would probably be even more expensive, as specialized processors often rely-levébmwagramming
languages which is a skill are less widely amongst programmers than the current C++/C#.

441n this analysis we assume that all the redevelopment costs must be amortized over the life of the specialized processor.
4 There is a subtle, but important third effect. Specialized chidikely to have longer replacement cycles (because of

the hidh fixed costs) and use older process technology. Both of tleesease demand for cuttiegge chipsfurther
undermiring the economics of producing new, cuttiedge chip manufacturing plants.

46 These transition dynamics also occurred in the, penhen supercomputer users slowly made their way from specialized
chips to massive numbers of universal processors.

47 $23hillion of Foundry revenue can be attributed to leadidge node$Smith, 2017) This accounts for TSMC and

Gl obal Foundri es. Assumi ng billior) neandor$ da m diliaM)gddes)reveoies 0l nt el 6
(Gartner, 2018yerives from leadingdge nodes, yields an upper bound of $id®n/$343billion 30%.

48 Technical note: This is driven overwhelmingly by lithography cosite cost of etching the design onto the chip.

49We implicitly assume that this is also the rate of growthttie leadingedge nodes. In practice it may be somewhat

lower, which would further accentuate our overall point.

50The 5% increase is across all process nodes, so it is possible that there would be a different growth rate for the most
advanced nodeBut, as we show later, such rates of growth would be, if anytlingrthan 5%.

51 The past decade saw the emergence of-pureay f oundri es. Foundries own fabs
processor designs. Until 2009, GlobalFoundries was the manufactepagrdent of Advanced Micro Devices (AMD).

By vertically disintegrating, the cost of the fab can be amortized over larger volumes.

52 Calculations based on values / rates derived earlier this section: assuming 30% of market sales going to leading edge;
13%cost increase, 2026: 0% market growth / 2032: 5% market growth. New facilities are assumed to be needed every
two years, and fixed costs spread out over that pafed(conservatively) assume that all market demand can be met

with a single facilitylf more than that is needed, the date moves eatrlier.

53 An alternative explanation for the increasing ratio could be that Intel is decreasing variable costs. We see no evidence
of this. Intelds gross mar gi n h a sir EBIE meaginwigicth indludeis ixtdy st abl
costs, has (as expected) been decreasing.

54 This number is NOT precise and is not intended to be. To calculate this precisely would require detailed numbers on
internal cost allocation at Intel, how they accrue, anduaich chips. Intel does not share such data. Rather, this is
intended to convey an ordef-magnitude comparison about how these costs have changed over time.

5% To be more technically precise, Dennard Scaling meant that power density of transistosedeaseihiey were
miniaturized. This allowed them to be switched faster. The operating speed of a processor is largely constrained by the
ability to dissipate heat as power density rises, but due to Dennard Scaling, the cooling problem per unit arda remaine
largely unchangefDennard et al., 197430 many more transistors could run in parallel. Since around 2005, significant
leakage currents and voltage limits led to an increase in energy density, limiting fuethduspfrom faster transistor
switching and creating areas of dark silicon to ensure operation without overliBating2007)Esmaeilzadeh et al.,

2012)

56 Importantly, these losses were felt unevenly. Some applications experienced the drop fully, whereas oibters did
(Thompson (2017) discusses these differences and their reliance on the parallelism of software in more detail).

57 For a discussion about these numbers and the debates in calculating ti{@yrnee®liner, & Sichel, 2017)

58 There is a debate about this. Taiwan Semiconductor Manufacturing (TSCM) claims that the cost per transistor is still
decreasing at historical rates (Jones, 2016). Intel and GlobalFoundries agree, but admit to shrinking bgmsters

than 50% each generation to make it happen (Bohr, 2017) (Patton, 2017).

5% 1n practice this is not strictly true, both Microsoft and Intel do significant work to ensure backwards compatibility
because users find remarkably unexpected (arstafilard) ways of using computers. Nevertheless, this work is only

the tiniest fraction oivhat would be involved if a nebackwards compatible processor were introduced.



