
Deep learning’s recent history has been one of achievement: from 
triumphing over humans in the game of Go to world-leading performance 
in image and voice recognition, translation, and other tasks. But this 
progress has come at a steep cost: a voracious appetite for computing 
power. 

This article reports on the computational demands of deep learning 
applications in five prominent application areas: Image classification; 
object detection; question answering; named entity recognition, and 
machine translation. It shows that progress in all five is strongly reliant on 
increases in computing power. Extrapolating forward, this reliance reveals 
that progress along current lines is rapidly becoming economically, 
technically, and environmentally unsustainable. Continued progress will 
require dramatically more computationally efficient methods, which either 
will have to come from changes to deep learning itself, or from moving to 
other machine learning methods.

Even when the first neural networks were created, performance was limited 
by available computation. In the past decade, these constraints have 
relaxed along with specialized hardware (e.g. GPUs) and a willingness to 
spend more on processors. However, because the computational needs 
of deep learning scale so rapidly, they are quickly becoming burdensome 
again.

DEEP LEARNING REQUIREMENTS IN THEORY

The relationship between performance, model complexity, and 
computational requirements in deep learning is still not well understood 
theoretically. Nevertheless, there are important reasons to believe that deep 
learning is intrinsically more dependent on computing power than other 
techniques, particularly because of the role of “over-parameterization” 
– when a model has more  parameters than data points – and how this 
scales. An example of large-scale over-parameterization is the current 
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state-of-the-art image recognition system, NoisyStudent, which has 480M 
parameters for Imagenet’s 1.2M data points.

The challenge with deep learning is that both the size of the network and 
the number of data points must grow rapidly to improve performance.

Since the cost of training a deep learning model scales with the product of 
the number of parameters and the number of data points, computational 
requirements apparently grows as the square of the number of data points 
in the over-parameterized setting. This quadratic scaling, however, is an 
underestimate of how fast deep learning networks must grow to improve 
performance, since the amount of training data must scale much faster 
than linearly in order to get linear performance improvements.

Figure 1: The effects of model complexity and regularization on model performance 
(measured as the negative log10 of normalized mean squared error of the prediction 
compared to the optimal predictor) and on computational requirements, averaged 
over 1000 simulations per case. (a) Average performance as sample sizes increase. 
(b) Average computation required to improve performance.

Figure 1 generalizes an insight attributed to Andrew Ng: That traditional 
machine learning techniques do better when the amount of data is small, 
but that flexible deep learning models do better with more data. We argue 
that this is a more general phenomenon of flexible models having greater 
potential, but also having vastly greater data and computational needs.  In 
our example, 1,500 observations are needed for the “flexible” model to 
reach the same performance as the “oracle” with 15. Regularization helps 
with this, dropping the data need to 175, but it is much less helpful with 
computational costs, as Figure 1(b) shows.

In sum, deep learning performs well because it uses over-parameterization 
to create a highly flexible model and uses (implicit) regularization to make 
the complexity tractable. At  the same time, however, deep learning requires 
vastly more computation than more efficient models. Paradoxically, the 
great flexibility of deep learning inherently implies a dependence on large 
amounts of data and computation.

DEEP LEARNING’S REQUIREMENTS IN PRACTICE  

Early on it was clear that computational requirements limited what neural 
networks could achieve. In 1960, when Frank Rosenblatt wrote about 
a three-layer neural network, there were hopes that it had “gone a long 
way toward demonstrating the feasibility of a perceptron as a pattern-
recognizing device.” But as Rosenblatt recognized, “as the number of 
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• The computational demands of deep learning applications in 
areas such as image classification, object detection, question 
answering, and machine translation are strongly reliant on 
increases in computing power—an increasingly  unsustainable 
model.

• Deep learning is intrinsically more dependent on computing 
power than other techniques because these models have 
more parameters, and require more data to train.

• The strong reliance on computing power for deep learning 
reveals that progress is rapidly becoming economically, 
technically, and environmentally unsustainable as limits are 
stretched.

• Continued progress will require dramaticlly more 
computationally efficient methods either from changes to 
deep learning itself, or by moving to other machine learning 
methods.
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connections in the network increases, the burden on a conventional digital 
computer soon becomes excessive.” 

In1969, Minsky and Papert noted a potential solution: Introducing longer 
chains of intermediate units (that is, by building deeper neural networks). 
Despite this potential workaround, much of the academic work in this area 
was abandoned because there simply wasn’t enough computing power 
available. 

In the decades that followed, improvements in computer hardware 
provided, by one measure, a ≈ 50,000× improvement in performance and 
neural networks grew their computational requirements proportionally. 
Since the growth in computing power per dollar closely mimicked the 
growth in computing power per chip, this meant that the economic cost 
of running such models was largely stable over time. Despite this large 
increase, deep learning models in 2009 remained “too slow for large-scale 
applications, forcing researchers to focus on smaller-scale models, or to use 
fewer training examples.” 

The turning point seems to have been when deep learning was ported 
to GPUs, initially yielding a 5 − 15× speed-up. By 2012 the increase 
grew to more than 35×, which led to the important victory of AlexNet at 
the 2012 Imagenet competition. But image recognition was just the first 
of these benchmarks to fall. Soon, deep learning systems also won at 
object detection, named-entity recognition, machine translation, question 
answering, and speech recognition.

The introduction of GPU-based (and later ASIC-based) deep learning led 
to widespread adoption of these systems. But the amount of computing 
power used in cutting-edge systems grew even faster--at approximately 
10× per year from 2012 to 2019. This rate far exceeded the ≈ 35× total 
improvement gained from moving to GPUs-- meager improvements 
from the last vestiges of Moore’s Law – or the improvements in neural 
network training efficiency. Instead, much of the increase came from a less 
economically attractive source: Running models for more time on more 
machines. It turns out that scaling deep learning computation by increasing 
hardware hours or number of chips is problematic because it implies that 
costs scale at roughly the same rate as increases in computing power, which 
will quickly make it unsustainable.

Figure 2: Computing power used in: (a) deep learning models of all types (as 
compared with the growth in hardware performance from improving processors, as 
analyzed by and), (b) image classification models tested on the ImageNet benchmark 
(normalized to the 2012 AlexNet model).

METHODOLOGY 

For our research, we perform two separate analyses of computational 
requirements reflecting the two types of information available: (1) 
Computation per network pass (the number of floating point operations 
required for a single pass in the network, also measurable using multiply-
adds, or the number of parameters in the model), and (2) Hardware burden 
(the computational capability of the hardware used to train the model, 
calculated as #processors × ComputationRate × time), which is shown in 
the full paper.  

First, we demonstrate our analysis in the area with the most data and longest 
history: image classification. Here, the relevant performance metric is 
classification error rate.  We find that the computation requirements scale as 
O(Performance9) for image recognition, and with exponents between 7.7 
and 50 for other areas. Collectively, our results make it clear that progress 
in training models has depended on large increases in the amount of 
computing power used—a dependence not unique to deep learning, but 
seen in other areas such as weather prediction and oil exploration. 

We extrapolate the estimates from each domain to understand the projected 
computational power needed to hit various benchmarks. To make these 
targets tangible, we present them not only in terms of the computational 
power required, but also in terms of the economic and environmental cost 
of training such models on current hardware (using the conversions from). 
Because the polynomial and exponential functional forms have roughly 
equivalent statistical fits — but quite different extrapolations — we report 
both in Figure 3. 

Figure  3: Implications of achieving performance benchmarks on the computation (in 
Gigaflops), carbon emissions (lbs.), and economic costs ($USD) from deep learning 
based on projections from polynomial and exponential models.

We do not anticipate that the computational requirements implied by the 
targets in Figure 3 will be hit. The hardware, environmental, and monetary 
costs would be prohibitive. Moreover, as we note, enormous effort is going 
into improving scaling performance. Nonetheless, these projections provide 
a scale for the efficiency improvements that would be needed to hit these 
performance targets. For example, even in the more-optimistic model, it is 
estimated to take an additional 105× more computing to get to an error 
rate of 5% for ImageNet. Hitting this in an economical way will require more 
efficient hardware, more efficient algorithms, or other improvements such 
that the net impact is this large a gain.

The rapid escalation in computing needs in Figure 3 also makes a stronger 
statement: Based on current trends it will be impossible for deep learning 
to hit these benchmarks. Instead, fundamental re-architecting is needed 
to lower the computational intensity so that the scaling of these problems 
becomes less onerous. And there is promise that this could be achieved. 
Theory tells us that the lower bound for the computational intensity of 
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regularized flexible models might be as low as O(Performance4), which 
is much better than current deep learning scaling. Encouragingly, there is 
historical precedent for algorithms improving rapidly.

The economic and environmental burden of hitting the performance 
benchmarks noted previously suggest that deep learning is facing 
an important challenge: Either find a way to increase performance 
without increasing computing power, or have performance stagnate as 
computational requirements become a constraint. Approaches to address 
this challenge include increasing computing power through hardware 
accelerators, reducing computational complexity through network 
compression and acceleration, and finding high-performing small deep 
learning architectures.

CONCLUSION

The explosion in computing power used for deep learning models has 
set new benchmarks for computer performance on a wide range of tasks. 
However, deep learning’s prodigious appetite for computing power 
imposes a limit on how far it can improve performance in its current form, 
particularly in an era when improvements in hardware performance are 
slowing. 

This paper shows that the computational limits of deep learning will soon 
be constraining for a range of applications, making the achievement of 
important benchmark milestones impossible if current trajectories hold. 
Finally, we have discussed the likely impact of these computational limits: 
Forcing deep learning toward less computationally intensive methods of 
improvement, and pushing machine learning toward techniques that are 
more computationally efficient than deep learning.

REPORT
The full research paper can be found here.
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