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Abstract

Decision-makers often want to target interventions (e.g., marketing campaigns) so as to
maximize an outcome that is observed only in the long-term. This typically requires delaying
decisions until the outcome is observed or relying on simple short-term proxies for the long-
term outcome. Here we build on the statistical surrogacy and off-policy learning literature to
impute the missing long-term outcomes and then approximate the optimal targeting policy on
the imputed outcomes via a doubly-robust approach. We apply our approach in large-scale
proactive churn management experiments at The Boston Globe by targeting optimal discounts
to its digital subscribers to maximize their long-term revenue. We first show that conditions
for validity of average treatment effect estimation with imputed outcomes are also sufficient
for valid policy evaluation and optimization; furthermore, these conditions can be somewhat
relaxed for policy optimization. We then validate this approach empirically by comparing it
with a policy learned on the ground truth long-term outcomes and show that they are statisti-
cally indistinguishable. Our approach also outperforms a policy learned on short-term proxies
for the long-term outcome. In a second field experiment, we implement the optimal targeting
policy with additional randomized exploration, which allows us to update the optimal policy
for each new cohort of customers to account for potential non-stationarity. Over three years,
our approach had a net-positive revenue impact in the range of $4-5 million compared to The
Boston Globe’s current policies.
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Jessica Bielkiewicz, Thomas Brown, Ryan McVeigh, and Shannon Rose for their partnership in conducting the field
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1 Introduction

Advertising revenues have been stagnating for newspapers in recent years.1 As a conse-
quence, newspapers are looking for ways to strengthen their subscription-based business model.
Take the New York Times as an example: in 2019, their total subscription revenue was twice their
total advertising revenue (Figure A.1, A.2). Their CEO recently said: “: : : we still regard adver-
tising as an important revenue stream, but we believe that our focus on establishing close and
enduring relationships with paying, deeply engaged subscribers, and the long-range revenues
which flow from those relationships, is the best way of building a successful and sustainable news
business”.2 Hence, to succeed in a subscription-based business model, news publishers must re-
tain their existing subscribers and maximize their long-term values. However, they also work
to acquire new subscribers, often at highly-discounted prices, who then may be a great risk of
churning after that introductory period (cf. Datta et al., 2015). A common approach to achieving
this goal is to target existing subscribers with marketing interventions, such as price discounts or
other personalized offers. Publishers are hardly the only firms that care about optimizing long-
term customer outcomes. Most firms that monetize through subscription models fall into this
category. Even more generally, decision-makers in business, medicine and public health, and gov-
ernment typically care about outcomes that are only observed over the long-term.

“Long-term” and “short-term” outcomes are fruitfully understood as defined relative to the
targeting cycle. For example, if a firm runs a campaign every year, then all outcomes that are
observed within a year, such as their 1-year revenue, are considered “short-term” because these
outcomes are observed before the firm takes action (decides whom to target with what) in their
next campaign. Hence, future policies can be optimized on these observed outcomes. In contrast,
“long-term” outcomes materialize over time horizons longer than the window of opportunity for
action, for example, three-year or five-year revenue, rendering the firm incapable of optimizing
their next campaign based on them. So, a natural question arises: How can firms learn and imple-
ment an optimal targeting policy when the primary outcome of interest is “long-term”?

A straightforward solution to this problem is to wait until the long-term outcome materializes
and choose a policy based on the realized long-term outcome. But this implies that the firm can
not learn anything in the meantime, and therefore is unable to implement the optimal policy until
years later. Another solution is to find a short-term proxy (e.g., short-term revenue) for the long-
term outcome and optimize for it instead. However, this could be problematic as the proxy and
the long-term outcome might not be well aligned. Hence, a policy that performs well on the proxy
might not perform well in the long-run. To further complicate things, firms almost always operate
in a changing environment. Subscribers may differ in their characteristics from one cohort to the
next and in the way they respond to the marketing interventions over time. Therefore, a static

1The print advertising revenue is declining with a compound annual growth rate (CAGR) of -12.6% from 2016-2021,
while digital ads revenue is still growing at a CAGR of 2.2%, it’s not enough to compensate for the loss in print. Source:
US Online and Traditional Media Advertising Outlook

2Source: https://www.nytimes.com/2018/02/08/business/new-york-times-company-earnings.html
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targeting policy optimized on one customer cohort may not remain optimal for future cohorts due
to this non-stationarity in the environment.

In this paper we propose to use surrogates (Prentice, 1989; VanderWeele, 2013) to impute the
missing long-term outcomes and use the imputed long-term outcomes to optimize a targeting
policy. We estimate the missing long-term outcome as the expectation of the long-term outcome
conditional on surrogates of that outcome in a historical dataset in which the long-term outcome
was observed. Surrogate index estimators combine multiple surrogates in the estimation (Xu and
Zeger, 2001; Athey et al., 2019). Once we have the imputed long-term outcomes, we optimize
the targeting policy efficiently by using a doubly-robust approach (Dudík et al., 2014; Athey and
Wager, 2020; Zhou et al., 2018) on the imputed long-term outcomes. We prove analytically that
this approach recovers the optimal policy learned on true long-term outcomes under certain as-
sumptions. We implement the optimal policy via bootstrapped Thompson sampling (Eckles and
Kaptein, 2014; Osband et al., 2016) to maintain exploration so we can update and re-optimize the
policy for every new cohort of customers to allow for potential non-stationarity.

We evaluate the efficacy of our approach empirically by running two large-scale field experi-
ments that target discounts to the digital subscribers of The Boston Globe, a regional leader in news
media. Boston Globe Media, which operates The Boston Globe newspaper and associated websites,
is facing a similar problem to many other publishers. Our goal is to learn an optimal targeting
policy that treats some subscribers with certain discounts to maximize their retention and long-
term revenue. Here a policy is a mapping from subscriber characteristics to a specific price or
discount (or a distribution over them when the policy is stochastic). In this subscriber retention
context, this is also known as proactive churn management.3 To construct the surrogate index, we
use the observed revenue and content consumption 1-6 months after treatment as our surrogates.
We compare how well the policies learned using surrogate index perform against policies deter-
mined directly on short-term proxies or surrogates (benchmark) or realized long-term outcomes
(the ground truth), we also consider alternative selections of surrogates for the construction of
surrogate index. Our approach increases the firm’s total projected digital subscription revenue by
$4-5 million over a three-year period relative to the status quo in the two experiments.

The rest of the paper is organized as follows. In Section 2 we review related work. The empir-
ical context is described in Section 3. We explain the imputation of the long-term outcome using
the surrogate index and prove sufficient conditions for it to be valid for policy evaluation and opti-
mization in Section 4. Then we describe the policy learning framework and how it is implemented
in Section 5. Section 6 discusses the empirical validation of our approach and experimental results
are reported in Section 7. We conclude in Section 8.

3Proactive simply means that the intervention (discount) happens before a churn intention is observed, by contrast,
reactive churn management means that the company first waits for customers to request to cancel their subscription
then offers some discount or other benefits in reaction to this in the hope of retaining them. One analogy is that
the proactive approach is like diagnosing and preventing illness before the patient shows strong symptoms, and the
reactive approach is like treating patients who are already ill.
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2 Related Work

Our paper builds on a large body of literature in biostatistics and medicine on surrogate out-

comes (i.e., endpoints, biomarkers); see, e.g., Joffe and Greene (2009) and Weir and Walley (2006)

for reviews. In clinical trials the goal is often to study the ef�cacy of an intervention on outcomes

such as the long-term health or survival rate of patients. However, the primary outcome of in-

terest might be very rare or only observed after years of delay (e.g., a 5 or 10-year survival rate).

It is common to use the effect of an intervention on surrogate outcomes as a proxy for its effect

on long-term outcomes. In a seminal paper, Prentice (1989) argued that to be a valid surrogate,

treatment and outcome have to be independent conditional on the surrogate. One intuitive way

for this and, critically, stronger conditions to be satis�ed is if the surrogate fully mediates the

treatment effect.4 In practice it is hard to �nd a single variable that plausibly satis�es the condi-

tion (Freedman et al., 1992), but Xu and Zeger (2001) showed that combining multiple surrogates

to predict the outcome can be preferable to using a single surrogate because the treatment effect

may operate through multiple pathways and, even when there is a single pathway, using multi-

ple surrogates can reduce measurement error. This idea is further developed in a recent paper in

econometrics (Athey et al., 2019), where the combination is referred to as a surrogate index. This

literature focuses on using surrogates to identify treatment effects on long-term outcomes and, in

this paper, we extend this to the optimization of targeting policies.

Another popular approach to modeling long-term outcomes is to posit a particular paramet-

ric generative model for the long-term outcomes. In the context of marketing, this is typically a

model of customer lifetime value (CLV or LTV). CLV models are widely used in marketing for

customer segmentation and targeting; see Gupta et al. (2006) and Fader and Hardie (2007) for

surveys. CLV is de�ned as the sum of discounted future revenues or pro�ts from a customer.

To calculate CLV we typically need to posit a parametric survival function and extrapolate the

survival or retention probability into the future. A recent example in the context of churn man-

agement is Godinho de Matos et al. (2018), where a parametric survival function is used. One

advantage of this approach is that we can apply it even when the long-term outcomes are never

observed5 because the prediction is based on functional form assumptions, unlike the surrogate

index approach which needs access to long-term outcomes in a historical dataset; on the other

hand, standard parametric CLV approachs may suffer from model misspeci�cation. Furthermore,

building a CLV model may require substantial work to formalize business logic in anything but

the simplest subscription businesses. A synthesis of these approaches is also possible in that a

CLV prediction, if already available, can also be used as one of the surrogates in the construction

4This can also be described as an exclusion restriction, as in instrumental variables. Like that case this assumption
has both testable and untestable implications. It might be tempting to regress the outcome on surrogate and treatment
and test if the coef�cient of treatment is zero. This naive test is not valid when there are unobserved confounders for the
surrogate and outcome, conditioning on the surrogate or a “collider” in such a case will generate spurious correlation
between treatment and confounder, and hence between treatment and outcome. See Joffe and Greene (2009) for a more
detailed discussion.

5The model is often assumed to be in�nite horizon.
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of a surrogate index.

This paper is also related to the literature on targeting policy evaluation and optimization,

which has recently developed within marketing research. Hitsch and Misra (2018) proposed

a direct estimation method for conditional average treatment effect (CATE) based on k-nearest

neighbors (kNN) and used it for policy optimization. Simester et al. (2019a) showed that we can

compare targeting policies more ef�ciently if we only compare the outcome of subscribers on

whom the policies prescribe different actions. Simester et al. (2019b) documented non-stationarity

such as covariate and concept shifts between two experiments and evaluated how robust different

machine learning models used to optimize policies are to these changes in the environment. Yoga-

narasimhan et al. (2020) used different machine learning models to estimate CATE and evaluated

how targeting policies constructed using these models perform against each other. In another

recent work, Lemmens and Gupta (2020) examine using a CLV model combined with �eld exper-

imentation to optimize targeting in the policy learning framework.

Our work complements this literature by addressing an orthogonal problem and is novel in

a few ways. First, we focus directly on targeting for long-term outcomes; outcomes used in these

other works are short-term (in the sense that they are observable when we optimize and imple-

ment the policy) or extrapolation is done using a parametric CLV model. 6 Second, we system-

atically add randomized exploration around the learned policy, which allows us to evaluate and

update the policy for future cohorts in case the environment changes. Hitsch and Misra (2018) and

Yoganarasimhan et al. (2020) studied the problem in a static setting. Simester et al. (2019b) did look

at changes in the environment but they focused on evaluating the robustness of different machine

learning models. Third, we use a doubly-robust (DR) approach (Dudík et al., 2014) for both policy

evaluation and learning in contrast to Hitsch and Misra (2018) and Yoganarasimhan et al. (2020)

who used an inverse probability weighting (IPW) estimator for policy evaluation. Lemmens and

Gupta (2020) introduce a specialized incremental-pro�t-based loss function that performs well in

their empirical evaluation, but lacks the asymptotic ef�ciency results available for doubly-robust

policy learning; it is also unclear how to combine this with known probabilities of treatment (i.e.,

design-based propensity scores) that arise in sophisticated experiments. In particular, even when

probabilities of treatment are known exactly (as in our setting), DR estimators have advantages in

statistical ef�ciency compared with IPW estimators (Athey and Wager, 2020; Zhou et al., 2018).

Substantively, our study adds to the literature on proactive churn management. Earlier work

focused on developing better prediction algorithms to more accurately identify potential churn-

ers. Neslin et al. (2006) provides a detailed comparison of different churn prediction models. Re-

cently, the literature started to look into the causal effect of targeting interventions on churn using

�eld experiments. For example, Ascarza (2018) and Lemmens and Gupta (2020) note that �rms

should not target customers based on their outcome level (churn risk) but should target based on

treatment effects. Ascarza et al. (2016) showed evidence from a �eld experiment with a telecom-

6Yoganarasimhan et al. (2020) showed in their particular case the policy learned on short-term outcome also does
well on long-term outcomes, but the policy is not directly optimized on long-term outcome.
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munication company that proactive churn interventions can back�re and increase the churn rate

in practice. They argued that this is because proactive intervention lowers customers' inertia to

switch plans and increases the salience of past-usage patterns among potential churners. Our pa-

per contributes to this literature by proposing an experimental framework that can be applied to

directly optimize targeting policies for long-term customer retention and revenues.

3 Empirical Context

Founded in 1872, The Boston Globeis the oldest and largest daily newspaper in the greater

Boston area. It has won a total of 26 Pulitzer Prizes and is widely regarded as one of the most

prestigious papers in the US. We ran targeting experiments on all digital only 7 subscribers of The

Boston Globein two cohorts. Our analysis is of a random sample of about 45K digital subscribers

in the �rst cohort and 95K in the second. For each subscriber we observed the short-term outcome

(e.g., monthly churn and revenue) and three sets of features: demographics (e.g., zip code), ac-

count activities (e.g., billing address change, credit card expiration date, complaints), and content

consumption (e.g., when and what articles they read). There was only one intervention in the �rst

cohort, which lowered the price for treated subscribers from $6.93 per week to $4.99 per week for

8 weeks. Approximately 1,000 subscribers were treated in the �rst cohort. An email (Figure B.1a)

was sent to all treated subscribers in August 2018 telling them that a discount had been automat-

ically applied to their accounts. We implemented 6 interventions in the second cohort: a thank

you email, a $20 gift card, a discount to $5.99 for 8 weeks, a discount to $5.99 for 4 weeks, a dis-

count to $4.99 for 8 weeks (the same as the intervention in the �rst cohort), and a discount to $3.99

for 8 weeks. About 6,000 subscribers were treated in the second cohort, with about 1,000 sub-

scribers assigned to each of these conditions uniformly at random conditional on being assigned

to treatment. A similar email (Figure B.1b) was sent to all treated subscribers in July 2019 with

the corresponding message, and a treated subscriber had to click on a button at the bottom of the

email to redeem the bene�t. There was no overlap of treated subscribers between the two cohorts.

All results in the paper are from intent-to-treat (ITT) analyses that do not condition on potentially

endogenous post-treatment behaviors, such as opening the email or redeeming the bene�t.

4 Imputing a Long-term Outcome with a Surrogate Index

We �rst introduce the notation that we use throughout the paper: let � 2 � be a targeting

policy that maps from the space of subscriber (or, more generally, unit) characteristics X to a space

of distributions (simplex) over a set of discrete actions A (we index actions by f 0; 1; 2; ::; K � 1g,

where 0 is control and others are different interventions). When the policy is non-degenerate, it

de�nes a probability distribution over possible actions conditional on covariates � (ajx) := P(A =

ajX = x); 8a 2 A; x 2 X. When it is degenerate, it maps to a �xed action with probability 1. The

7The Globealso has a combined print and digital subscription. All subscribers are paying customers.
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goal is to learn a policy that maximizes some average long-term outcome Y over a population of

n units.8

De�nition 1. A Policy and its Value

� : X ! �( A) (1)

V (� ) := E[Yi (x i ; � (x i ))] (2)

De�nition 2. Optimal Policy

� � := argmax
�

V(� ) (3)

In our application, the primary outcome of interest is long-term subscriber retention or rev-

enue9, but we do not observe these outcomes in the short-term, i.e., after the intervention in the

�rst cohort and before we implemented the learned policy for the second cohort of customers.

Hence, we use a surrogate index to address this problem. This entails using intermediate out-

comes that are observed over the short-term period following the intervention, such as a sub-

scriber's content consumption on the newspaper's website and short-term revenue. 10 These sur-

rogate variables are then combined with the long-term outcomes in the historical data to impute

missing long-term outcomes for subscribers in the experiment. Assume we have two datasets,

one from the experiment labeled E and one based on historical (observational) data labeled H .

We observe draws of the tuple (X; A; S ) in the experiment where X 2 X represents the subscriber

characteristics,A 2 A is the action (i.e., treatments, interventions) and S 2 Sis the potentially vec-

tor valued set of intermediate outcomes or surrogates. Note that we don't observe the long-term

outcome Y in the experiment. In the historical dataset, we observe draws of the tuple (X; S; Y );

note that there was no intervention in this dataset (i.e., it is observational), but the long-term

outcome Y is observed. We can de�ne a surrogate index ~Y for the long-term outcome Y as the

expectation of the long-term outcome conditional on subscriber characteristics and surrogates in

the historical dataset H :11

De�nition 3. Surrogate Index
~Yi := EH [Yi jSi ; X i ] (4)

Under Assumption 1-3 listed below, a central result in Athey et al. (2019) is that the average treat-

ment effect (ATE) on ~Y recovers the ATE on long-term outcome Y. That is, by constructing the

surrogate index we can identify and feasibly estimate the ATE on some long-term outcomes with-

out having to wait until they are observed.

8This de�nition can be modi�ed to be interpretable with �nite populations if E is understood as 1
n

P n
i =1 .

9Being a digital service, marginal costs are negligible compared with subscription revenue.
10These intermediate outcomes are known as surrogates or proxies for their instrumental value in predicting the

long-term outcome of interest.
11One advantage of this approach is that the estimation of the conditional expectation can be treated as a supervised

learning problem and can be performed using �exible non-parametric machine learning methods like XGBoost (Chen
et al., 2015).
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Assumption 1. Regular treatment assignment mechanism (Ignorability and Positivity): The treatment

assignment is conditionally independent of potential long-term outcomes (Ignorabillity) and all units have

positive probability of being assigned to each action (Positivity) in the experimental dataset.

A i ?? (Yi (a); Si (a)) jX i 8a 2 A; i 2 E (5)

0 < � (ajx) < 1 8a 2 A; x 2 X (6)

Assumption 2. Surrogacy: The treatment assignment is independent of long-term outcomes conditional

on the surrogates in the experimental dataset.

A i ?? Yi j Si ; X i ; i 2 E (7)

Surrogacy is implied by a generative model in which the set of surrogates fully mediate the casual

effects from treatment to the long-term outcome (cf. Lauritzen, 2004). In our context, it means the

effect of price discounts on retention and revenue should occur via some intermediate outcomes

we observe, e.g., content consumption and short-term revenue.

Assumption 3. Comparability: The distribution of the long-term outcome conditional on the covariates

and surrogates is the same across the experimental and historical datasets.

Yi j Si ; X i ; i 2 E � Yi j Si ; X i ; i 2 H (8)

In our case, this assumption implies that the distribution of long-term retention and revenue (con-

ditional on content consumption and short-term retention and revenue) should be the same be-

tween the experimental and historical datasets. Note that under comparability assumption we

have:
~Yi = EH [Yi jSi ; X i ] = EE [Yi jSi ; X i ] (9)

Assumption 1 is satis�ed because the price discounts are randomly assigned conditional on

subscriber characteristics according to the design policy. Assumption 2 is the key assumption

and, while it may have some testable implications, is not directly testable. It is more plausible if

we have a rich set of surrogates, something that is more likely in our setting as publishers now

observe how their content is being consumed. To make Assumption 3 more plausible, we use the

most recent historical data to do the estimation; that is, for the experiment run in 2018 we used

the observed revenue data from 2015–2018 to estimate the 3-year revenue for subscribers in the

experiment.12

Given these assumptions, we prove that the surrogate index is valid for policy evaluation and

optimization. Policy evaluation is the estimation of V (� ) for a given policy � . Policy optimization

is �nding a � that maximizes V (� ). See Section 5 for more details about doing so in �nite samples;

here we simply consider the optimal policy de�ned on the population. We show that the value of

12We can also directly test for this after the long-term outcomes in the experiment are realized, but not before.
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a policy with respect to surrogate index is identical to its value on the long-term outcome; this in

turn implies that the optimal policy with respect to the surrogate index coincides with that optimal

policy with respect to long-term outcomes. We state the main results here and the proofs are in

Appendix C.

Let ~V (� ) denote the value of � with respect to ~Y rather than Y .

Proposition 1. Under Assumption 1-3, policy evaluation conducted on surrogate index identi�es the true

policy value de�ned on long-term outcomes.

~V (� ) = V (� ) 8� 2 � (10)

Since the function being maximized is identical at all points, it is also identical at its maximum.

Proposition 2. Under Assumption 1-3, policy optimization conducted on surrogate index recovers the true

optimal policy.

argmax
�

~V(� ) = argmax
�

V(� ) (11)

Proposition 1 and 2 are analytical results that could justify our empirical application. How-

ever, somewhat weaker assumptions are in fact suf�cient for Proposition 2 than for results for esti-

mation of the ATE or CATEs. Let � a(x) = EE [Y (a)� Y (0)jX = x]) and ~� a(x) = EE [ ~Y (a)� ~Y (0)jX =

x]). When Assumption 2 (Surrogacy) is violated (the set of surrogates doesn't fully mediate the

treatment effect on long-term outcomes), the CATE estimated using surrogate index can be biased

(even with in�nite data). That is, � a(x) 6= ~� a(x) for some x 2 X. Here our aim is not estimating

CATEs, but simply optimizing the policy. Bias in CATEs (i.e., non-zero � a(x) � ~� a(x)) doesn't result

in a loss in the value of the optimized policy unless the bias changes the sign of that CATE. 13

Thus, we can introduce a somewhat weaker version of Assumption 2 that is suf�cient for

policy optimization.

Assumption 4. Sign Preservation: The sign of conditional average treatment effects is the same for the

surrogate index and the long-term outcome.

sign(~� (x)) = sign(� (x)) 8a 2 A; x 2 X (12)

This is an assumption directly on CATEs, and so is not as readily interpretable with respect to the

data-generating process. Nonetheless, we can reason about how this assumption may be more

plausible in some settings than others. For example, if we hypothesize that a treatment “works”

(i.e., has a large positive effect) on some groups by not others, and this treatment has some cost,

then the distribution of CATEs may be bi-modal with no mass near zero. Furthermore, one can

characterize this loss in policy optimization, much as Athey et al. (2019) develop bounds on the

bias for the ATE. Here we state this result, with details in Appendix C.

13Concern with getting the sign of the treatment effect correct using surrogates has featured prominently in the
literature on the “surrogate paradox”, in which various surrogacy de�nitions are satis�ed by the effect on the surrogate
and outcome have opposite signs; see, e.g., Chen et al. (2007); VanderWeele (2013); Jiang et al. (2016).
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Proposition 3. There is a loss in the value of optimal policy only when a CATE estimated on surrogate

index has a different sign than the true CATE. The total loss equals to the sum of the absolute value of

true CATE weighted by the fraction of subscribers with the corresponding covariates that the CATE is

conditioned on.

In summary, assumptions introduced in the surrogacy literature can be used to justify policy

evaluation and optimization with a surrogate index. Furthermore, it is possible to relax these

assumptions for policy optimization precisely because the optimal policy is only sensitive to the

sign of treatment effects.

5 Learning Optimal Policy from the Experiments

We �rst assigned subscribers to treatment using a behavior or design policy � D
14 in the �rst

cohort that balances exploration and exploitation, we do so by assigning subscribers with higher

predicted churn probability into treatment with higher probability (see Appendix D.2 for a more

detailed discussion). We then optimized the targeting policy using results from the �rst cohort

and implemented it in the second cohort.

5.1 Off-policy Evaluation

Off-policy evaluation means we want to use data collected under the behavior policy � D to

estimate the value of a counterfactual policy � P . One popular choice of estimator is based on

inverse probability weighting (IPW). The Hajek estimator, a normalized version of the Horvitz–

Thompson estimator (Horvitz and Thompson, 1952), is typically used to implement IPW. The

average long-term outcome under an arbitrary targeting policy � P using data collected under a

design or behavior policy � D is:

V̂IPW(� P ) =

 
X

i

� P (ai jx i )
� D (ai jx i )

! � 1

�
X

i

� P (ai jx i )
� D (ai jx i )

Yi (13)

where Yi is the outcome, ai 2 f 0; 1; 2; :::; K � 1g is the actual treatment received by subscriber i

in the �rst cohort assigned by the design policy � D . � P is the probability of assigning subscriber

i to a given condition under the counterfactual policy that we want to evaluate. 15 We will use

ai = 0 to denote the control and ai = 1 to denote the treatment when actions are binary. 16 The �rst

term in Equation 13 is simply a normalization term; the ratio between � P and � D is also known

14In reinforcement learning literature (e.g., Sutton and Barto, 2018) the policy used to collect training data is called a
behavior policy. We also call it a design policy in our experimental setting.

15The corresponding unnormalized Horvitz–Thompson estimator is: 1
n

P
i

� P ( a i j x i )
� D ( a i j x i ) � Yi

16For example, when ai = 1 it means subscriber i was in treatment and she was assigned to treatment with probability
� D (1jx i ), and � P (1jx i ) is the probability that i receives treatment under counterfactual policy � P . Similarly, when
ai = 0 it means subscriber i was in the control and she was assigned to control with probability � D (0jx i ), and � P (0jx i )
is the probability that i will be in control (or not be treated) under counterfactual policy � P .
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as the importance weight. We need � D to be strictly positive for all subscriber action pairs. Note

that we don't require the policy being evaluated � P to have this property, it can be a deterministic

policy. In general, the Horvitz–Thompson estimator is unbiased but has higher variance. The

Hajek estimator is biased in �nite samples but consistent, and it has lower variance is therefore

more widely used in practice. 17 The main advantage of IPW is that it's fully non-parametric when

the propensity scores are known and it doesn't require us to specify a model for the outcome

process.

However, the IPW estimator has two main limitations: �rst, Hajek can still suffer from high

variance. Second, when evaluating a deterministic policy � P , it only uses observations for which

the actions prescribed by the target policy � P and design policy � D agree (when they don't agree

� P (ai jx i ) is always zero). This reduces the effective sample size, especially when� P and � D are

very different. 18 Following Robins et al. (1994), one way to improve upon IPW is by augmenting

it with an outcome model � to use all observations and further stabilize the estimator. This is

known as the doubly-robust method (DR) (Dudík et al., 2014). Under the DR approach, the value

of a policy � P can be estimated as:

V̂DR(� P ) =
1
n

X

i

�
�̂ (x i ; � P ) +

� P (ai jx i )
� D (ai jx i )

� (Yi � �̂ (x i ; ai ))
�

(14)

where

�̂ (x i ; � P ) =
X

a2 A

� P (ajx i )�̂ (x i ; a) (15)

The �rst term in Equation 14 �̂ (x; a) is an outcome model that estimates the expectation of

the outcome for a given action a and covariates pro�le x. The second term is the importance

weight multiplied by the prediction error, it corrects the �rst term towards the direction of the

long-term outcome by an amount that is proportional to the prediction error. For a deterministic

target policy � P it does so whenever the actions prescribed by � D and � P agree. Note that the high

variance of IPW is from the importance weights (dividing by a small probability when � D is very

unbalanced), this term vanishes if the prediction error is small. Both IPW and DR are consistent,

but DR is known to have lower variance and therefore more ef�cient. We use the DR estimator for

policy evaluation.

17For more discussion about the difference please see Owen (2019).
18Two policies are similar if they tend to prescribe the same action for a given subscriber pro�le, the more often they

prescribe different actions for a given subscriber, the more different they are.
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5.2 Off-policy Optimization

As shown in the previous section, policy optimization builds on CATE estimation. We fo-

cus on using doubly-robust estimation. 19 We can �rst construct a doubly-robust score for each

subscriber–action pair (which also has the interpretation of an estimate of an individual potential

outcome) (Robins et al., 1994; Chernozhukov et al., 2016; Dudík et al., 2014; Athey and Wager,

2020; Zhou et al., 2018):


̂ a(x i ) = �̂ (x i ; a) +
Yi � �̂ (x i ; a)

� D (ajx i )
� 1f ai = ag (16)

These doubly-robust scores are equal to the prediction of an outcome model plus a correction term

based on IPW; the correction is applied if and only if the action being evaluated is the same as the

action taken. This is intuitive because the correction term depends on Yi which is the outcome

under a realized action A i , it is informative only when the action being evaluated is the same as a,

otherwise the term drops out and the doubly-robust scores reduce to the outcome model. CATEs

can then be estimated as:

�̂ a(x i ) =
1
n

X

i

(
̂ a(x i ) � 
̂ 0(x i )) (17)

We can use these doubly-robust scores for policy optimization (Murphy et al., 2001; Dudík et al.,

2014) by solving a cost-sensitive classi�cation problem. This has been shown to have good ef�-

ciency properties (Athey and Wager, 2020; Zhou et al., 2018).20 That is, we estimate the optimal

policy with:

�̂ � (x i ) = argmax� 2 �
1
n

X

i

(
̂ 1(x i ) � 
̂ 0(x i )) � (2� (x i ) � 1) (18)

or in multi-action case:

p̂i
�
(x i ) = argmax� 2 �

1
n

X

i

< 
̂ (x i ); � (x i ) > (19)

where 
̂ (x) = ( 
̂ 0(x); 
̂ 1(x); :::; 
̂ k (x)) is a vector of doubly-robust scores based on Equation 16 and

� (x) is a vector of probabilities with which the policy assigns a unit to each action. < � > is the dot

product between vector valued 
̂ (x) and � (x).

In the cost-sensitive classi�cation problem, for each unit, the correct label is the action that

corresponds to the highest doubly-robust score, and the loss for classifying a unit to action ai ,

when the correct label is a�
i , is 
̂ a� (x i ) � 
̂ a(x i ). In the multi-action case, a cost-sensitive binary

classi�cation is done on every pair of actions, and the �nal action is chosen by a majority vote.

19Estimation of CATE can also be implemented in different ways. Hitsch and Misra (2018) distinguish between what
they label “indirect” approaches (which �rst estimate the outcome model as a function of covariates and actions and
then take the difference between actions as treatment effects) and “direct” methods estimate the CATE directly without
�rst estimating an outcome function (e.g., causal trees (Athey and Imbens, 2016)), causal forest (Wager and Athey,
2018) and causal kNN (Hitsch and Misra, 2018)). This typology may be confusing to readers familiar with contextual
bandit and policy learning literatures where, at least since Dudík et al. (2014), “direct methods” are those using outcome
regressions without IPW (i.e. what Hitsch and Misra (2018) label “indirect”).

20Here ef�ciency means that the difference between the value of a true and estimated optimal policy, also known as
regret, decays faster as sample size increases.
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When policy is restricted, we can choose a speci�c type of classi�er (e.g., logistic regression or

decision trees for interpretation or transparency reasons) or not allow the classi�er to use certain

types of information (note that we still use all information to construct the doubly-robust scores

and can exclude a subset of features at the classi�cation stage). Another advantage of this ap-

proach is that once the doubly-robust scores or labels are constructed, we can plug them into off

the shelf classi�ers to learn the optimal policy.

To account for the statistical uncertainty in action selection and continue exploration we use a

variant of Thompson sampling, bootstrap Thompson sampling (Eckles and Kaptein, 2014; Lu and

Van Roy, 2017; Osband et al., 2016), that is readily implemented for models for which Thompson

sampling might be cumbersome to implement the optimal policy; see Eckles and Kaptein (2019)

and Osband et al. (2017) for reviews. We use bootstrap Thompson sampling as a heuristic ap-

proach to adding randomized uncertainty-based exploration to the estimated optimal targeting

policy in the second cohort where a subscriber i is assigned to action a with probability propor-

tional to the fraction of times an action is estimated to be optimal across all bootstrap replicates. 21

6 Surrogate Index Validation and Comparison

To evaluate the ef�cacy of our approach empirically, we �rst look at how well the surrogate

index recovers the true long-term outcome and the treatment effect estimated on the true long-

term outcome. We then validate it by looking at how it performs against a benchmark policy that's

learned on some short-term proxies of the long-term outcomes (e.g., 1-6 month revenue), and a

policy learned on the true long-term outcome (e.g., realized 18-month revenue, from August 2018

to February 2020). We also look at how the performance changes if we chose a different subset of

surrogates. The surrogates we use are: content consumption (number of articles read in each of

the 20 most visited sections22 on The Boston Globe's website) and revenue over the �rst 6 months.

Intuitively, the longer we wait, the better we can estimate the long-term revenue. But we also want

to learn the optimal policy fast so we can implement it; 6 month seems to strike a good balance.

All policy values here are de�ned relative to the status quo of treating no one. And all con�dence

intervals are 95% from 1,000 bootstrap draws in the testing data.

First, we look at how the average treatment effect on the treated (ATT) calculated using the

surrogate index compares with ATT calculated using the true outcome. The results are shown

in Figures 1a. The surrogate index based ATT estimates match the true estimate quite well after

just the �rst month. Note that the con�dence intervals of ATT estimated on true outcomes are

wider than the ones estimated on surrogate index. When the surrogacy assumption holds, it is

more ef�cient to estimate the treatment effect on surrogate index because it discards irrelevant

variation in the long-term outcome. For policy learning purpose, it's more important to learn the

21In cases where a subscriber is always or never assigned to some conditions we need to impose a probability �oor
and ceiling to ensure that all subscribers have positive probability being assigned to all conditions.

22The sections are: metro, sports, news, lifestyle, business, opinion, arts, Sunday magazine, ideas, search, member
center, south, spotlight, page not found, nation, north, magazine, circulars, politics.
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treatment effects on the long-term outcome than predicting the levels of the long-term outcome.

Next, we look at the value of surrogate index-based policy (Figure 1c), all results are signi�cantly

better than the status quo except when we only use information from the �rst month. By contrast,

optimizing the policy directly on short-term proxies (1-6 month revenue) doesn't outperform the

status quo (Figure 1d).

We also compare the surrogate index-based policy with policy based on the true long-term

outcome (Figure 1b). Although all the point estimates of the value difference are negative, none

of them is distinguishable from zero, suggesting that surrogate-based policies do not perform

signi�cantly worse than the policy based on the true outcome. Lastly, we compare surrogate

outcomes constructed using only content consumption information, only short-term revenue and

both. As shown in Figure 2, the three approaches are not signi�cantly different. 23

7 Experimental Results

7.1 First Cohort

We plot the empirical survival curves in Figure 3 using data from August 2018 – February

2020. The �rst thing to notice is that the survival rate is relatively high, about 80% of subscribers at

the beginning of the experiment remain subscribers 1.5 years later. Second, there is a gap between

treatment and control group. We summarize the treatment effect over time in Appendix D.3.

We then estimate the optimal policy via the cost-sensitive classi�cation discussed in the previ-

ous section (Equation 18) on both observed mid-term (18-month) revenue and imputed long-term

(3-year) revenue.24 We �rst construct doubly-robust scores for each subscriber using Equation

16 where �̂ is estimated using XGBoost via cross-�tting. 25 We then split the data into training

(80%) and testing sets (20%) and use XGBoost as the classi�er with hyper-parameters tuned via

cross-validation.

In Appendix D.4 we compare value of the optimal policy learned on the realized 18-month

revenue against (1) the value of benchmark policies including treating subscribers at random and

treating subscribers with highest risk of churn; (2) the value of optimal policies learned on dif-

ferent subsets of features to highlight the value of information; (3) the value of optimal policies

learned via different classi�cation models, outcome regression (indirect method) and causal forest

(direct method) to highlight the value of the model. In Appendix D.5 we use tools in interpretable

machine learning to look at what variables are most important in determining the optimal policy,

and how the optimal policy depends on these variables.

23Athey et al. (2019) suggests that when the surrogacy condition holds, the smallest set of surrogates has the highest
precision in estimating the treatment effect.

24In a subscription model revenue and churn are equivalent since revenue for each subscriber =
P

t pt r where pt is
the survival probability in period t and r is the �xed per period subscription fee.

25Cross-�tting means that �̂ for individual i is estimated without using i 's own data in the training process. We can
split data randomly into n folds, then �̂ for individuals in a given fold is trained only using data from the other n � 1
folds, it reduces over-�tting and improves ef�ciency (Athey and Wager, 2020; Zhou et al., 2018). We use n = 3 in our
estimation.
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(a) Average treatment effect on the treated (ATT) on rev-
enue using a surrogate index estimated using data from
the �rst 1-6 month, the blue line is the ATT estimated
using true 18-month revenue.

(b) The value difference between optimal policies
learned on surrogate indices and true outcomes.
Surrogate-index-based policies are statistically indistin-
guishable from the policy learned on the true outcome.

(c) The value difference between optimal policies
learned on surrogate indices constructed with surrogates
from 1-6 months and the current policy. Except for a sin-
gle month, they outperform the status quo.

(d) The value difference between optimal policies
learned with a single short-term proxy (revenue at
month 1–6) and the current policy. The value is indis-
tinguishable from the status quo.

Figure 1. The empirical validation of using surrogate index for policy learning.
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Figure 2. The value difference between policies learned using surrogate indices using content con-
sumption variables, short-term revenue variables, or both, and the current policy. Each improves
over the status quo.

The optimal policy can generate $40 per subscriber revenue increase (95% con�dence interval

[$10, $75]) over 3 years compared to the current policy that treats no one, which is $1.7 million dol-

lars in total for the �rst cohort. We implement the optimal policy based on imputed 3-year revenue

in the second cohort via bootstrap Thompson sampling. The density of treatment probability, as

outputted by the bootstrap Thompson sampling using 18-month and imputed 3-year revenue as

outcome, is summarized in Figure 4. We can see that both policies have the highest density near 0,

but the 3-year policy assigns more subscribers to treatment than the 18-month policy. We re-scale

the probabilities to make sure the total number of treated subscribers is approximately 6,000 for

capacity reasons. Since we have 6 treatment conditions in the second cohort, we �rst used the

bootstrap distribution of the optimal policy to decide who to treat, then conditional on treatment,

we assigned subscribers to the 6 treatment conditions uniformly at random. We did this because

all interventions except one are new. In future cohorts we can learn and implement an optimal

policy over all interventions based on the results from the second cohort.

7.2 Second Cohort

We plot the survival curves in Figure 5 using data from July 2019 to February 2020. Treat-

ment effects are reported in Appendix D.3. Surprisingly, $5.99/4 weeks and $5.99/8 weeks, which

give the smallest discounts, have the biggest treatment effect on churn reduction. This, in turn,

translates into the biggest effect on revenue.

We �rst provide some validation of estimated treatment effects by regressing churn and rev-

enue on the interaction between treatment and treatment probability estimated. There is a sig-

ni�cantly higher effect on subscribers that are predicted to have a bigger effect in the �rst cohort
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Figure 3. Empirical survival curve from the �rst cohort

(Table 1).26 Then we optimize the policy, via multi-class cost-sensitive classi�cation, using data

from the second cohort. An optimal policy is summarized in Table 2 as fractions of subscribers

being treated by each action. The optimal policy improves 3-year revenue by $30 per subscriber

(95% con�dence interval [$12, $50]) relative to the status quo that treats no one, generating $2.8

million in the second cohort.

We further compare the two cohorts to see whether there are signi�cant changes in the en-

vironment in terms of covariate and concept shift in Appendix D.6. When the environment is

stationary, it's more ef�cient to pool data from the two cohorts together to estimate the optimal

policy for the next cohort, and when the environment is changing, it's better to down-weight ob-

servations from the �rst cohort using a time-decaying case weight (e.g., Russac et al., 2019). We

only use data from the second cohort to estimate the optimal policy because there's some evidence

for concept shift in our data and there's only one common treatment condition between the two

cohorts.

8 Conclusion

Many applied problems, such as the pro-active churn management problem studied here,

can be fruitfully characterized as learning a targeting policy. However, we often want to learn

a policy to maximize long-term outcomes. Here we advance the practice of policy learning by

26We reported ATT in the table using inverse probability weights in the regression.
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Table 1. Interaction between treatment and treatment probability

Dependent variable:

churn revenue

3.99/8 weeks � 0.016��� (0.003) � 22.032��� (0.279)

4.99/8 weeks � 0.005 (0.003) � 14.055��� (0.280)

5.99/4 weeks � 0.022��� (0.003) � 1.996��� (0.279)

5.99/8 weeks � 0.025��� (0.003) � 4.994��� (0.279)

gift card � 0.020��� (0.003) � 18.214��� (0.280)

thank you email only � 0.012��� (0.003) 0.905��� (0.278)

treatment prob � 0.005��� (0.001) 0.280��� (0.102)

3.99/8 weeks � treatment prob � 0.0002 (0.002) � 0.083 (0.144)

4.99/8 weeks � treatment prob � 0.003� (0.002) 0.116 (0.146)

5.99/4 weeks � treatment prob � 0.003 (0.002) 0.530��� (0.145)

5.99/8 weeks � treatment prob � 0.006��� (0.002) 0.504��� (0.145)

gift card � treatment prob � 0.006��� (0.002) 0.152 (0.146)

thank you email only � treatment prob 0.003� (0.002) � 0.332�� (0.145)

constant 0.105��� (0.002) 120.849��� (0.197)

Observations 95,554 95,554

Note: � p< 0.1; �� p< 0.05;��� p< 0.01
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Figure 4. Distribution of treatment probabilities according to the design policy for the second
cohort. These probabilities re�ect uncertainty about whether a given subscriber should be treated,
as computed using the bootstrap distribution. Distributions are shown for both 18-month revenue
and imputed 3-year revenue.

incorporating the use of a learned surrogate index to impute the long-term outcomes. We �rst

show analytically when a surrogate index is valid for policy evaluation and optimization in place

of true unobserved long-term outcomes. Then to validate our approach empirically, we run two

large-scale adaptive experiments that prescribe who should be targeted with what incentives in

order to maximize long-term subscription revenue for The Boston Globe. We show that the policy

optimized on long-term outcomes imputed by a surrogate index outperforms a policy optimized

on a short-term proxy of the long-term outcomes. The surrogate index also performs similarly

to the policy optimized on true long-term outcomes. We then implement the optimized policy

with additional randomized exploration so that we can respond to potential non-stationarity and

update the optimized policy after treating each cohort. The total 3-year revenue impact, relative

to the status quo, of treating the �rst two cohorts with the policy optimized using the surrogate

index sums to $4-5 million. Our paper adds to and complements a recent and growing literature in

marketing on policy evaluation and learning (e.g., Hitsch and Misra, 2018; Simester et al., 2019a,b;

Yoganarasimhan et al., 2020) and empirical work in proactive churn management (e.g., Ascarza,

2018) by focusing on optimizing targeting policies for long-term retention and revenue.

This framework can also be applied very generally to other empirical settings in business,

education, or public policy where there is a need to personalize interventions to optimize some

long-term outcomes and the cost of experimentation is relatively low. A natural question is how
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Figure 5. Empirical survival curve in the second cohort by treatment conditions. Dashed curve
is the treatment group, vertical dashed line indicates when the discount ends (there's no ending
date for gift card and thank you email only condition)

to choose surrogates when imputing long-term outcomes. In principle, we want to choose vari-

ables that lie on the causal chain from treatment to long-term outcomes, as suggested by domain

knowledge or theory. We also want to choose surrogates that are observable shortly after the inter-

vention so the policy can be learned quickly. If relevant experiments have been conducted in the

past then the quality of surrogates can be evaluated on the realized long-term outcomes as we've

shown in the paper. Surrogates that are highly predictive of the outcome are potential candidates

but there's no guarantee that they will produce high policy values, as predicting the outcome level

is a different task than predicting the treatment effect. Future research may examine selection of

potential surrogates. Finally, since surrogacy is fundamentally a question about the underlying

causal mechanism, once some surrogates have been shown to be valid for a given problem, they

may be likely to remain valid for similar problems in the future. For example, we showed short-

term revenues and content consumption are good surrogates for the effect of price discounts on

long-term retention and subscription revenues, so the �rm can tenatively rely on this assumption
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Table 2. Distribution of optimal actions estimated from the second cohort

condition percentage
control 23%

thank you email only 25%
gift card < 1%

$5.99/8 weeks 25%
$5.99/4 weeks 27%
$4.99/8 weeks <1%
$3.99/8 weeks <1%

as they continue to iterate on targeting policies. We can imagine building such a knowledge base

for different sets of problems and long-term outcomes as more empirical researchers work in this

general framework.
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Appendix

A New York Times Example

Figure A.1. Number of mentions of key works in annual report over time (Source: chartr)
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