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A     lgorithms — the step-by-step procedures used by  
computers to solve problems — are among the central 

pillars of computer science. When algorithms improve, they 
enable scientists and others to use computers for tackling 
larger problems and exploring new domains

Many bold claims have been made about the pace of 
algorithmic progress, but these claims have often been based 
on either inadequate data or narrowly focused problems.

As a result, our knowledge of algorithmic progress has 
remained fragmented. Is progress faster for some algorithms 
than others, and if so, by how much? 

To answer these and other related questions, we provide 
the first comprehensive analysis of algorithmic progress, 
considering data from 57 textbooks and 1,137 research 
papers. We look systematically at when specific algorithms 
were discovered, how they have improved, and how the 
scale of these improvements compares with other sources of 
innovation, including computer hardware. 

Some prior research has quantified progress for particular 
algorithms, including maximum flow (Leiserson et al., 2020), 
Boolean satisfiability and factoring (Grace, 2013), and linear 
solvers (including Bixby, 2002; and Womble, 2004). 

Other research has looked at progress on benchmarks such 
as computer chess ratings or weather prediction (including 
Thompson et al., 2020; and Hernandez and Brown, 2020). 
But these benchmarks are not strictly comparable to 
algorithms; they lack either mathematically defined problem 
statements or verifiably optimal answers. So what’s the best 
way to assess progress?
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One way to improve computer performance is to change 
their algorithms — the step-by-step procedures used by 
computers to solve problems.

While many claims have been made about the rapid 
pace of algorithmic progress, these claims have been 
largely anecdotal. This research reviewed data from 57 
textbooks and nearly 1,140 research papers to provide 
the first comprehensive analysis of algorithmic progress.

Analysis reveals a wide discrepancy. On the one hand, 
roughly half of all algorithm families experience little 
or no improvement. On the other, 14% experience 
improvements so transformative, they radically change 
how and where the algorithms can be used.

The study also compared algorithmic progress with 
that of hardware, as expressed by Moore’s Law, which 
states that processor power doubles every two years. 
Overall, the research finds that algorithmic progress 
for moderate-sized problems increased by less than 
Moore’s Law, while for sufficiently big data problems it 
increased by more than Moore’s Law.
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RESEARCH METHODOLOGY
For this analysis, we categorize algorithms into families. Two 
or more algorithms can be considered members of the same 
family if they solve the same underlying problem. In theory, 
an infinite number of algorithm families could be created by 
subdividing existing domains so that special cases can be 
addressed separately. But these subdivisions do not present 
an asymptotic, or mathematically significant, improvement 
for the full problem, and therefore we exclude such special 
cases in our analysis. 

To focus on algorithms that are particularly consequential, 
we limit our consideration to families considered important 
by the authors of the 57 textbooks we examined. Based 
on these inclusion criteria, we identify 113 algorithm 
families, by which we mean they solve the same underlying 
problem. Each family, in turn, comprises an average of eight 
algorithms. 

We consider an algorithm to be an improvement if it 
reduces its family’s worst-case asymptotic time complexity. 
Asymptotic time is useful analytical shorthand when 
discussing algorithms. Basically, given a sufficiently high 
number of inputs, if one algorithm has a higher asymptotic 
time complexity than another, it will take more steps to run. 

Based on these criteria, we find 276 initial algorithms and 
subsequent improvements, giving us an average of 1.44 
improvements for each initial algorithm. 

We also consider algorithm discovery and improvement over 
time (Figure 1). For this analysis, we examine several factors, 
including: 

• The number of new algorithm families discovered each 
decade

• The percentage of algorithm families that improved each 
decade

We also investigate what are known as time complexity 
classes. These provide a way of classifying algorithms by the 
number of operations they require. For example, nearly a 
third of algorithm families (31%) belong to the exponential 
complexity category, meaning that as their  input size grows,

they require at least exponentially more operations to 
complete. Over time, algorithms can move from one 
complexity class to another. This occurs mainly when 
algorithm designers find new, more efficient ways of 
implementing a particular algorithm.

Fig. 1:  Algorithm discovery and improvement. (a) Number of new algorithm 

families discovered each decade, in red. (b) Share of known algorithm 

families improved each decade, in blue.

Asymptotic time complexity is divided into classes, 
analogously to how biologists divide life into animals, 
plants, etc.  These time complexity classes provide a way 
to classify algorithms by the number of operations they 
require. For example, nearly a third of algorithm families 
(31%) belong to the exponential complexity category, 
meaning that as their input size grows, they require at least 
exponentially more operations to complete. Over time 
algorithms can move from one complexity class to another. 
This occurs when algorithm designers find new, more 
efficient ways of implementing an algorithm.
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Additionally, we compare algorithm improvements with 
innovations resulting from Moore’s Law and other hardware 
advances. Moore’s Law — originally formulated in the 1960s 
by Gordon Moore, a co-founder of Intel Corp. — observes 
that the overall processing power of computers roughly 
doubles every two years. Over time, the gains become 
exponentially far greater. While Moore’s Law led to hardware 
improvements happening smoothly over time, algorithms 
experience large, but infrequent improvements.

 

MEASURING ALGORITHM IMPROVEMENT
An algorithm family’s overall performance improves when 
new algorithms are discovered that can solve the same 
problem, but with fewer operations. To measure this 
progress, we focus on discoveries that improve asymptotic 
complexity. 

We generated a list of algorithms and their groupings by 
analyzing coursework from 20 leading computer-science 
university programs. This yielded 11 algorithm subdomains, 

including machine learning, cryptography, and databases. 
Next, for each of these subdomains, we analyzed 57 
algorithm textbooks, some dating back to the 1960s. We 
used the authors’ categorization of problems to determine 
both those algorithm families that are important to the field, 
and which algorithms correspond to each family.

In our analysis, we focus on exact algorithms with exact 
solutions. That is, we look only at cases that meet two 
criteria: First, the problem statement can be met exactly — 

for example, “find the shortest path between two nodes 
on a graph." Second, there has to be an optimal solution. 
In this example, the solution is that the shortest path has 
been identified. We then calculate historical improvements 
by examining the initial algorithm in each family as well 
as all substantial substantial algorithms that improve time 
complexity.

CONCLUSIONS
Our analysis finds a wide range of algorithmic improvement 

Fig. 2. Relative performance improvement for algorithm families, as calculated using changes in asymptotic time complexity. The comparison line is the 
SPECInt benchmark performance. Historical improvements for four algorithm families are compared with the first algorithm in that family (n = 1 million).
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from 1978 to 2017 (Figure 2). At one extreme, roughly half of 
all algorithm families experience little or no improvement. At 
the other, 14% experience improvements so transformative, 
they radically change how and where the algorithms can be 
used. This was surprising, because it expands how computers 
can be used.

Overall, algorithmic progress for the median algorithm family  
increased substantially. But it progressed by less than 

 

Moore's Law for moderate-sized problems.  For example, for 
moderate-sized problems, only 30% to 43% of algorighmic 
families had improvements comparable to or greater than 
those from Moore's Law and other hardware advances (Figure 
3).  For larger problems, however, algorithm improvement 
became the dominant source of progress, outpacing Moore's 
Law.

The results quantify two important lessons regarding the

Fig. 3. Average yearly improvement rates for 110 algorithm families as calculated by asymptotic time complexity. Figure (a, blue) illustrates problems with 1,000 data points; figure (b, 
red), problems with 1 million data points; and figure (c, green), problems with 1 billion data points. The hardware-improvement line shows the average yearly growth rate in SPECint 
benchmark performance, which specifies CPU integer processing power, from 1978 to 2014(Hennessey and Patterson, 2019).
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ways algorithm improvements affect computer science: 

• When an algorithm family transitions from exponential 
to polynomial complexity, it transforms the 
manageability of that problem in a way no amount of 
hardware improvement can match. 

• As problems increase to billions or even trillions of data 
points, algorithmic improvement becomes substantially 
more important than hardware improvements, 
or Moore’s Law, in terms of the average yearly 
improvement rate. This is especially important for areas 
with large datasets, such as big data analytics and 
machine learning.

Taken together, our results highlight the fact that algorithms 
are one of the most important sources of improvements in 
computing — a systematic achievement that had previously 
been mostly undocumented. 

REPORT
Read the full research paper here
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