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A causal test of the strength of weak ties
Karthik Rajkumar1, Guillaume Saint-Jacques1, Iavor Bojinov2, Erik Brynjolfsson3,4, Sinan Aral5*

The authors analyzed data from multiple large-scale randomized experiments on LinkedIn’s People You May
Know algorithm, which recommends new connections to LinkedIn users to test the extent to which weak
ties increased job mobility in the world’s largest professional social network. The experiments randomly
varied the prevalence of weak ties in the networks of over 20 million people over a 5-year period, during which
2 billion new ties and 600,000 new jobs were created. The results provided experimental causal evidence
supporting the strength of weak ties and suggested three revisions to the theory: First, the strength of weak
ties was nonlinear. Statistical analysis found an inverted U-shaped relationship between tie strength and job
transmission such that weaker ties increased job transmission but only to a point, after which there were
diminishing marginal returns to tie weakness. Second, weak ties measured by interaction intensity and the
number of mutual connections displayed varying effects. Moderately weak ties (measured by mutual
connections) and the weakest ties (measured by interaction intensity) created the most job mobility. Third, the
strength of weak ties varied by industry. Whereas weak ties increased job mobility in more digital industries,
strong ties increased job mobility in less digital industries.

T
he Strength ofWeak Ties (1) is one of the
most influential social theories of the
past century, underpinning networked
theories of information diffusion (2, 3),
social contagion (4, 5), social movements

(6), industry structure (7), influence maximi-
zation (8), and human cooperation (9, 10). It
argues that infrequent, arms-length relation-
ships, known as “weak ties,” providemore new
employment opportunities (11), promotions
and greater wage increases (12), creativity
(13), innovation (14, 15), productivity (16), and
performance (17) because they deliver more
novel information than strong ties. Weak ties
are thought to provide access to diverse, novel
information because they connect us to dispa-
rate and diverse parts of the human social
network (18–24). In addition to productivity,
performance, innovation, and other benefits,
weak ties are thought to be specifically well
suited to deliver new employment opportuni-
ties because they provide novel labor market
information, making job mobility a centerpiece
of the original weak tie theory.

Recent large-scale correlational investiga-
tions of the weak tie hypothesis, however,
have uncovered a seeming “paradox of weak
ties,” suggesting that strong ties are more
valuable than weak ties in generating job
transmissions (25, 26). Though these are the
largest, most direct empirical examinations of
the weak tie hypothesis to date, because the
work is not experimental the authors right-
fully acknowledge that their results “may not
be the true causal effect of tie strength on the
probability of a sequential job.”More generally,
two empirical challenges have prevented robust
causal tests of the weak tie theory to date:
First, a lack of large-scale data linking human
social networks to job transmissionmakes mea-
surement of the relationship between weak ties
and labor market outcomes difficult. Second,
network ties and labor market outcomes are
endogenous, making the causal link between
weak ties and job placement elusive. Individ-
uals’ labor market outcomes are likely to be
determined by and to simultaneously deter-
mine their social networks. The evolution of
social networks and job trajectories are also
likely correlated with unobserved factors such
as effort, ability, and sociability, which confound
empirical identificationof the linkbetweenweak
ties and jobs.
We address these two empirical challenges

and provide an experimental causal test of
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the weak tie theory with data frommultiple
large-scale randomizedexperimentsonLinkedIn,
theworld’s largest professional social network.
The experiments randomly varied the preva-
lence of strong and weak ties in the profes-
sional networks of over 20 million LinkedIn
members by adjusting the platform’s People You
May Know (PYMK) algorithm, which recom-
mends new connections to members (Fig. 1A
illustrates the experimental design). LinkedIn’s
PYMK algorithm is an ensemblemachine learn-
ing model comprising the following: (i) a model
for estimating the propensity of an ego (i.e.,
a focal member) to send a connection invite
to an alter (i.e., a member the focal member
is not currently connected with), (ii) a model
estimating the alter’s propensity to accept an
invite from the ego, (iii) a model estimating
the engagement between the ego and alter
once connected and (iv) weights on each of
these models for relative importance. The ex-
periments tuned these components, introduced
new data sources, and relied on the number
of mutual connections between the ego and
a potential tie recommendation as one of the
most important features of the ensemble model
to randomly vary weak and strong tie rec-
ommendations. We performed a retrospec-
tive analysis of the randomization created by
the PYMKexperiments conducted by LinkedIn
between 2015 and 2019 in two waves.
The first wave examined a global experiment

conducted in 2015 that had over 4 million ex-
perimental subjects and created over 19million
new connections.We collected edge-level obser-
vations of tie strength and job transmission
outcomes for each tie created during this ex-
periment. We then analyzed a larger second
wave of node-level PYMK experiments that
took place worldwide in 2019. The second
wave spanned every continent and US state,
had more than 16 million experimental sub-
jects, created ~2 billion new connections and
recorded more than 70 million job applica-
tions that led to 600,000 new jobs during the
experimental period (Fig. 1, B and C). The data
were collected both at the node level (in 2019),
where each observation corresponds to a unique
LinkedIn member, and at the edge level (in
2015), where each observation corresponds to
a unique tie between two LinkedIn members
(see Fig. 1A for a description of how we com-
piled the edge- and node-level datasets).
We analyzed labor market mobility by mea-

suring both job applications and job trans-
missions. Job applications are simply the
number of jobs LinkedIn members applied
to on the platform in the three months after
an experiment. In accordance with the litera-
ture (25, 26), we consider a job transmission to
have occurred when three criteria are satisfied:
First, user A reports working at company c at
dateD1. Second, user B reports working at that
same company c at a later dateD2, withD2 and

D1 being at least one year apart. Third, user A
and user B were friends on the social network
at least one full year before D2. In the weak tie
literature, when these three criteria are met, a
tie is considered a “sequential job” tie, which
represents the state of the art in measuring
relational job mobility.
We measured tie strength by its two lead-

ing indicators: the intensity of the interaction

between two people and the number of mutual
connections they had in common.Wemeasured
interaction intensity by counting the number
of interactions LinkedIn members had with
one another through bilateral messaging. We
measured mutual friendship by counting the
number of friends any two connected in-
dividuals had in common when their tie was
created. Structural tie strength, based onmutual
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Fig. 1. Experiment design and summary statistics. (A) describes the experimental design and representation
of the resultant data in node- and edge-level analyses; (B) displays the number of experimental units in
the 2015 and 2019 experiments by continent and experimental variant (98.8% of the 2015 data was from
the U.S.); and (C) displays the average degree, network diversity (formally defined in the SM), and number of
experimental units by U.S. state in our 2019 experiments.
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friendship, was then defined bidirectionally
as follows:

StructuralTieStrengthij ¼ Mij

Di þ Dj �Mij � 2

where i and j are LinkedIn members, Mij is
the number of mutual connections between
them, and Di and Dj are the total number of
direct connections of members i and j, respec-
tively. Network diversity is defined as 1−Ci,
where Ci is the local clustering coefficient
(formally defined in the SM).
Because tie strength changes in response to

one’s own friending behavior and the friend-
ing behavior of one’s connections, we mea-
sured structural tie strength pretreatment and
examined the causal effect of adding a new
connection whose pretreatment tie strength

was either strong or weak depending on
whether it was above or below the median of
the pre–treatment tie strength distribution
(Fig. 2C). Interaction intensity is observed once
a new tie is created. We therefore measured
interaction intensity during the experimental
period after tieswere formed. Job seekers have
more connections (greater degree) (Fig. 2A)
and greater network diversity at higher degrees
(Fig. 2B). But because these network variables
are endogenously determined in observational
data, random variation in LinkedIn members
networks is necessary for a robust causal as-
sessment of the relationship between weak
ties and job mobility.
We estimated the causal effects of strong

and weak ties on job mobility with an instru-
mental variables (IV) approach (27–29). The IV

framework disentangles endogeneity by using
random variation created by exogenous treat-
ment assignments as a shock to endogenous
counts of newly created weak and strong ties
to estimate their causal effect on job mobility.
We estimated these effects in a two-stage least
squares (2SLS) specification, using the random
assignment of members to weak- or strong-tie
experimental variants as instruments for identi-
fying the effect of adding weak or strong ties on
job applications and job transmissions.
We conducted both node-level and edge-

level analyses of the relationship between tie
strength and job mobility. Node-level analyses
estimated the effect of the number of weak
or strong ties created by the experiments on
job applications and job mobility. Though the
node-level analysis estimates how assignments
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Fig. 2. Network statistics and first stage effects of experimental treat-
ments. (A) displays the node-level degree distributions of job seekers and non–
job seekers whereas (B) displays the corresponding distribution of network
diversity by job seeker status by quartiles of members’ degrees to distinguish
diversity and network size, in which job seekers are members who applied for a
job in the three months before an experiment; (C) displays the edge-level
structural tie strength distribution of all ties created during the 2019

experiments, in which the cutoff for determining weak or strong ties is the
median of structural tie strength in the LinkedIn network before the experiments;
and (D) displays the “first stage” effects of the experimental treatments on
how many new ties are created by members. The point estimates and standard
error bars report the number of new ties created and their relative split
between strong and weak ties by members assigned to different treatment
variants compared to a control variant.
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to weak- or strong-tie–inducing experimental
treatments created changes in job mobility, it
obfuscates which weak or strong ties led to
job transmission. We therefore also conducted
edge-level analyses to estimate the marginal
effect of adding strong or weak ties tomembers’
networks on their subsequent job mobility.
The first stage regressions estimated the ef-

fects of assignments to different experimental
treatment variants on the creation of weak
and strong ties in LinkedIn members’ profes-
sional networks. The results of these first stage
regressions, shown in Fig. 2D, demonstrate
the random variation created by our experi-
ments by displaying the effects of the experi-
mental treatment variants on the creation of
weak and strong ties between members in
the LinkedIn network. As the figure shows,
some treatment variants caused members to
form more weak ties (e.g., variants A and E),
whereas others causedmembers to form fewer
weak ties (e.g., variants F and G). The different
variants also caused members to create more
ties (e.g., variants A, C, and E), fewer ties (e.g.,
variant G), or approximately the same number
of ties (e.g., variants B, D, and F), allowing us
to distinguish the causal effect of tie strength
on job outcomes from the causal effects of
the number of new ties created.
The second stage regressions estimated the

effect of weak and strong ties on job mobility.
The fitted values estimated in the first stage
captured only those changes in the number
of new weak or strong ties caused by our ex-
periments. In the second stage only the varia-
tion in the creation of new weak or strong ties
caused by our exogenous treatment assign-
ments was used to estimate the effects of weak
or strong ties on job applications and job
transmissions. In this way the IV approach
enabled causal inference by excluding (i) the
effects of job mobility on the formation of
weak and strong ties, (ii) the effects of strategic
network formation behaviors that precede job
mobility, and (iii) variation created by observ-
able and unobservable confounding factors
that can affect both network formation and
job mobility, from estimates of the effects of
weak and strong ties on labor market behav-
iors and outcomes.
For our approach to provide valid causal

inference, the treatment assignment to a
PYMK algorithm variant should be a valid
instrument for the number of weak and strong
ties created by experimental subjects and thus
should satisfy four assumptions (27). First, the
independence assumption, which requires that
the instrument was randomly assigned, was
satisfied as the LinkedIn experimentation
platform used a Bernoulli design to randomly
assign all users to different treatment arms.
Second, the exclusion restriction, which re-
quires that the instrument did not affect the
outcome through any channels except the
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treatment channel, held because the experi-
ments uniquely altered tie recommendations
without altering any other algorithm related
to job outcomes such as job recommendations
or job search rankings. It also had no effect
on how members interacted or shared social
information with each other (e.g., messages,
posts, comments, likes, and shares), other than
through the new connections formed as a re-
sult of the experiments (see Section C.3 and
table S24 in the SM). Third, the monoton-
icity assumption, precluding the existence of
“defiers”—egos that initiated more weak tie
connections when assigned to an algorithm
that promoted strong ties—was satisfied by
the design of the PYMK algorithm, which
assigned suggested treatment connections to
ranks that weremuchmore likely to be clicked
on and initiated. This assumption was also
satisfied by the strong suggestive evidence
that these assignments worked to create the
desired behaviors observed in the new con-

nection outcomes for each treatment variant
(Fig. 2D). Fourth, the relevance assumption,
which requires that the instrument had an
effect on the treatment, was satisfied by the
varying numbers of weak, strong, and total
ties created by the different treatment arms
shown in Fig. 2 (see Section C.3 of the SM for
an in-depth discussion of these assumptions
and their verification). To estimate the bias in
correlational analyses of the weak tie hypoth-
esis, we also specified and estimated stan-
dard ordinary least squares (OLS) regressions
assessing the correspondence between tie
strength and job mobility.
Our main results are summarized in Fig. 3.

The first column in each panel displays results
from OLS estimation whereas the second
column displays results from the experimental
instrumental variables (IV) analysis. Dots rep-
resent point estimates of the effects and bars
represent standard errors. Figure 3A displays
the results of our OLS and experimental esti-

mates of the effect of weak and strong ties on
job transmissions at the node level. Although
the OLS analysis replicated previous findings
of an apparent paradox of weak ties in which
strong ties were more strongly correlated with
job transmissions, the experimental IV anal-
ysis reversed this result and suggested a non-
linear relationship between tie strength and
job transmission in which medium strength
ties were the most effective in generating job
mobility. As the statistical power of the node-
level analysis was not sufficient to confirm in-
dividual differences between the effects of
strong, medium, and weak ties in our experi-
ments, we also analyzed these relationships at
the more granular edge level.
Figure 3B displays the results of our OLS

and experimental estimates of the effect of the
strength of a newly added tie, measured by the
numberofmutual connectionsbetweenLinkedIn
members before treatment, on the probabil-
ity of a job transmission between them after
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treatment at the edge level. Although the OLS
estimates again replicated previous correla-
tional research demonstrating the paradox of
weak ties and showed that strong ties were
more strongly correlated with an increased
probability of a job transmission through the
tie, the experimental IV results mirrored the
node-level experimental results and revealed a
more nuanced correspondence—namely that
there was an inverted U-shaped relationship
between tie strength and the likelihood of a
job transmission. At low levels of mutual
friendship adding new ties with more mutual
friends caused the probability of a job trans-
mission to go up. However, adding ties with
more than ten friends in common reduced the
probability of a job transmission.
Figure 3C displays the results of our OLS

and experimental estimates of the effect of the
strength of a newly added tie, measured by the
interaction intensity between LinkedIn mem-
bers and on the probability of a job transmis-
sion between them, again at the edge level.
Although the OLS estimates showed that
stronger ties were correlated with an increased
probability of job transmission the experimental
IV results revealed the opposite—the stronger
the newly added ties the less likely they were
to lead to a job transmission. This relationship
was also nonlinear. The weakest ties with the
least interaction intensity increased the likeli-
hood of a job transmission the most whereas
the strongest ties with the greatest interaction
intensity increased the likelihood of a job
transmission the least; further, the relation-
ship between interaction intensity and job
transmission was approximately flat for the
middle quartiles of the interaction intensity
distribution.
Three major conclusions emerged from our

main results: First, experimental analysis helped
resolve the apparent paradox of weak ties in
multiple large-scale experiments of job mobil-
ity in the world’s largest professional social
network. Although the correlational analysis
supported the seeming importance of strong ties
for job mobility, the experimental analyses—
conducted over multiple sample populations,
numerous years, and in all geographic regions
of theworld—confirmed that relatively weaker
ties increased the likelihood of job mobility
the most.
Second, our experiments uncovered a con-

sistent nonlinearity in the relationship between
tie strength and job mobility. In contrast to
the increasing likelihood of job transmission
associated with greater tie strength in correla-
tional analyses, our experiments showed that
when considering structural tie strength based
on the number of mutual friends between
contacts, an inverted U-shaped relationship
exists between tie strength and job mobility—
with moderately weak ties increasing job mobil-
ity the most and the strongest ties increasing

job mobility the least. When considering tie
strength based on interaction intensity, in a
direct reversal of the correlational evidence, the
experimental analysis showed that the weakest
ties had the greatest impact on job mobility
whereas the strongest ties had the least.
Third, whereas node-level analyses measured

the impact of experimental variation in the
number of weak or strong ties in one’s network
on job transmission, our edge-level analysis
enabled an assessment of the marginal effects
of adding strong or weak ties. The results
showed that adding new moderately structur-
ally diverse ties with weak interaction inten-
sity created the greatest marginal increases in
the likelihood of job transmissions.
Prior research also suggests that weak and

strong ties have different effects across dif-
ferent industries (22). We therefore examined
the heterogeneity in the impact of strong and
weak ties on job mobility across industry sec-
tors. Although the second wave experimental
sample was sufficiently powered to examine
this heterogeneity, experiments conducted in
this wave in 2019 do not leave sufficient time
to examine impacts on longer-term job trans-
mission outcomes. Therefore we limited our
analysis of these heterogeneous effects to
job applications, which are estimable in the
short term.
We classified the industries in which LinkedIn

members applied for jobs on the basis of the
demand for particular skills listed for those
jobs and the counts of occupations in different
industries calculated from Burning Glass Tech-
nologies (BGT) data and other sources (see sup-
plementary material for details). The industry
classifications were created by measuring the
weighted skill demands of all job postings
within an industry listed in the BGT data and
the counts of an industry’s hiring for different
occupations listed in the job postings of that
industry. Based on these metrics, we developed
scores that measured each industry’s informa-
tion technology (IT) intensity, software intensity,
suitability for machine learning, suitability for
artificial intelligence, degree of robotization,
and suitability for remote work using known
indices for these metrics in the labor econom-
ics literature (30–32). We then measured the
degree to which experimental variation in the
acquisition of new strong or weak ties led to
increases or decreases in job applications to
industries of these types.
Results of our IV analysis showed that, in

the full sample, addingweak ties led tomore job
applications overall (Fig. 4A), which provides
evidence of the mechanism linking weak ties
to job transmissions. As members acquired
more weak ties through the PYMK algorithm
experiments they applied to more jobs and
experienced considerably greater job mobility.
The heterogeneous treatment effects also re-
flect a clear trend toward weak ties creating

greater job mobility in more digital sectors of
the economy. The results showed that weak
ties resulted in more job applications than
strong ties to industries with greater IT
(Fig. 4B) and software intensity (Fig. 4C), as
well as industries more suitable for machine
learning (Fig. 4D), artificial intelligence (Fig.
4E) and remote work (Fig. 4G), along with
those that have experienced a greater degree
of robotization (Fig. 4F). By contrast, adding
strong ties caused more job applications to
industries that relied less on software (Fig. 4C)
and were less automated by robots (Fig. 4F).
Although our work presents the first large-

scale, longitudinal, experimental evidence on
the causal effects of strong and weak ties on
job mobility in a global sample and across
multiple industries, it is not without limitations.
First, although PYMK experiments provided
a robust channel through which to introduce
experimental variation into the evolution of
human social networks, we could not compel
LinkedIn users to take these recommendations.
Therefore a degree of self selection exists in who
acted on the connection recommendations.
For this reason we analyzed our experiments
as having an “intent to treat” and compared the
population assigned to weak-tie experimental
variants to those assigned to strong-tie exper-
imental variants and control groups (for raw
intent to treat point estimates, see table S14).
Although this approach controls for any bias
from self selection, it circumscribes the popu-
lations towhich our results generalize. Although
therewere some observable differences between
memberswho tookPYMKrecommendations on
LinkedIn and those who did not, most did,
making our results broadly generalizable to the
LinkedIn population. However, unsurprising-
ly, exposure depended on use of the platform
and viewing the PYMK recommendations. As
we report in the SM, LinkedIn members ex-
posed to our treatments were slightly younger
and more active job seekers, clarifying the pop-
ulation to which our results reliably generalize.
Second, LinkedIn is a professional social

network andmay be different than other online
social networks such as Facebook or offline
social relationships such as those originally
studied by Granovetter. However we do know
that certain characteristics such as network
clustering, for example, are similar across
Facebook, LinkedIn, and Twitter (see SM Sec-
tion F.2). Furthermore, our OLS results closely
mirrored the results of very large global studies
of networks and job mobility on Facebook,
which suggests that similar processes are oc-
curring in both networks. There are some dif-
ferences between the population of workers
on LinkedIn and those in the US, European,
and broader global economies. For example,
LinkedIn skews more heavily toward workers
in finance, information and professional services,
high technology industries, and construction
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and manufacturing, and less toward whole-
sale and retail trade work than the US work-
force (see SM Section F.2 for a comparison of
LinkedIn profiles with the US and EU work-
forces). However, LinkedIn is also the world’s
largest professional social network and one
of the largest websites for job listings. Many
people rely on LinkedIn to find work so this
network may be even more representative of
how networks affect job mobility in the larger
labor market than, for example, friendship net-
works or the Facebook network.
Third, any networked experiment must pay

close attention to the possibility of statistical
interference, in which one unit’s treatment
assignment affects another unit’s outcome, the
ignorability of which is known as the stable
unit treatment value assumption (33). To mini-
mize such interference we only tracked the
edges that eachmember initiated throughPYMK
recommendations. Nevertheless, there were still
three possible channels through which interfer-
ence could have occurred in our setting. First,
interference could have emerged if an ego’s
treatment assignment affected their alters
through changes in ego’s behaviors that were
visible to the alters. LinkedIn facilitates some
social actions that might have been seen by a
member’s alters including posting on the news
feed, commenting on a post, or sending private
messages. However, none of these behaviors
were considerably affected by the various treat-
ments, making this channel of interference
unlikely to affect our results (see table S24). A
second interference channel could have arisen
if member i intended to connect withmember
j but, because of member j’s treatment assign-
ment, j initiated a connection request before i
had a chance to send one. If accepted, such ties
would be attributed to ego j in our analysis. To
account for this possibility we verified that
the treatments did not affect the number of
connection requests received by members in
different treatment arms, allowing us to con-
clude that any effect from receiving connec-
tion requests was small and balanced across
treatments and therefore negligible (see table
S25). Third, interference could have occurred
if new ties generated bymembers as a result of
treatment changed the composition of other
members’PYMK recommendation lists. Fortu-
nately, LinkedIn’s membership is large enough
to ensure a sufficient inventory of new ties to
replenish any removed ties with comparable
individuals, ensuring that the composition of the
potential ties was consistent throughout the
experiment. Furthermore, PYMK inputs did
not change often enough for new connections
to immediately change the types of algorithmic
recommendations any member saw, ensuring
the experiments’ stability. This minimized the
risk that connection behaviors instantaneously
updated the algorithms and thus changed the
types of recommendations other members saw.

Formoredetails on the interference assumption,
please see SM Section C.2.
Despite these limitations, our analysis of

several large-scale experiments on the world’s
largestprofessional socialnetworkdemonstrated
that weak ties create job mobility. In contrast
to recent large-scale correlational evidence of a
paradox of weak ties, we found that moder-
ately weak ties with low interaction intensity—
measured by the number of mutual friends
between two people—increased job applications
and job transmissions the most, whereas strong
ties—measured by both the number of mutual
friends and interaction intensity—increased job
applications and job transmissions the least. We
also found an inverted U-shaped relationship
between structural tie strength and job trans-
missions and a nonmonotonically decreasing
correspondence between interaction intensity
and job transmissions, demonstrating a con-
sistent nonlinearity in the relationship be-
tween tie strength and job mobility, as well as
heterogeneity in the impact of weak ties on job
applications across industries with varying de-
grees ofdigitization.The industry analysis showed
that weak ties causedmore job applications to
high-tech industries, broadly speaking, whereas
strong ties caused more job applications to low-
tech industries. Together, these results provide
some of the first large-scale experimental evi-
dence of the strength of weak ties and suggest
the need to revise the theory to incorporate the
nonlinear effects of tie strength on job trans-
missions, differences between the effects of
structural tie strength and tie strength mea-
sured by interaction intensity, and differences
between the effects of weak and strong ties on
job mobility across industries.
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